forked from nishantb15/Ray-Tracer-Part-2-BVH-and-Mesh
-
Notifications
You must be signed in to change notification settings - Fork 1
/
algebra3.cpp
1037 lines (780 loc) · 28.7 KB
/
algebra3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**************************************************************************
algebra3.cpp, algebra3.h - C++ Vector and Matrix Algebra routines
There are three vector classes and two matrix classes: vec2, vec3,
vec4, mat3, and mat4.
All the standard arithmetic operations are defined, with '*'
for dot product of two vectors and multiplication of two matrices,
and '^' for cross product of two vectors.
Additional functions include length(), normalize(), homogenize for
vectors, and print(), set(), apply() for all classes.
There is a function transpose() for matrices, but note that it
does not actually change the matrix,
When multiplied with a matrix, a vector is treated as a row vector
if it precedes the matrix (v*M), and as a column vector if it
follows the matrix (M*v).
Matrices are stored in row-major form.
A vector of one dimension (2d, 3d, or 4d) can be cast to a vector
of a higher or lower dimension. If casting to a higher dimension,
the new component is set by default to 1.0, unless a value is
specified:
vec3 a(1.0, 2.0, 3.0 );
vec4 b( a, 4.0 ); // now b == {1.0, 2.0, 3.0, 4.0};
When casting to a lower dimension, the vector is homogenized in
the lower dimension. E.g., if a 4d {X,Y,Z,W} is cast to 3d, the
resulting vector is {X/W, Y/W, Z/W}. It is up to the user to
insure the fourth component is not zero before casting.
There are also the following function for building matrices:
identity2D(), translation2D(), rotation2D(),
scaling2D(), identity3D(), translation3D(),
rotation3D(), rotation3Drad(), scaling3D(),
perspective3D()
---------------------------------------------------------------------
Author: Jean-Francois DOUEg
Revised: Paul Rademacher
Version 3.2 - Feb 1998
**************************************************************************/
#include <math.h>
#include "algebra3.h"
#include <ctype.h>
/****************************************************************
* *
* vec2 Member functions *
* *
****************************************************************/
/******************** vec2 CONSTRUCTORS ********************/
vec2::vec2(void)
{n[VX] = n[VY] = 0.0; }
vec2::vec2(const float x, const float y)
{ n[VX] = x; n[VY] = y; }
vec2::vec2(const float d)
{ n[VX] = n[VY] = d; }
vec2::vec2(const vec2& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; }
vec2::vec2(const vec3& v) // it is up to caller to avoid divide-by-zero
{ n[VX] = v.n[VX]/v.n[VZ]; n[VY] = v.n[VY]/v.n[VZ]; };
vec2::vec2(const vec3& v, int dropAxis) {
switch (dropAxis) {
case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; break;
case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; break;
default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; break;
}
}
/******************** vec2 ASSIGNMENT OPERATORS ******************/
vec2& vec2::operator = (const vec2& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; return *this; }
vec2& vec2::operator += ( const vec2& v )
{ n[VX] += v.n[VX]; n[VY] += v.n[VY]; return *this; }
vec2& vec2::operator -= ( const vec2& v )
{ n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; return *this; }
vec2& vec2::operator *= ( const float d )
{ n[VX] *= d; n[VY] *= d; return *this; }
vec2& vec2::operator /= ( const float d )
{ float d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; return *this; }
float& vec2::operator [] ( int i) {
if (i < VX || i > VY)
//VEC_ERROR("vec2 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("vec2 [] operator: illegal access" );
return n[i];
}
/******************** vec2 SPECIAL FUNCTIONS ********************/
float vec2::length(void)
{ return sqrt(length2()); }
float vec2::length2(void)
{ return n[VX]*n[VX] + n[VY]*n[VY]; }
vec2& vec2::normalize(void) // it is up to caller to avoid divide-by-zero
{ *this /= length(); return *this; }
vec2& vec2::apply(V_FCT_PTR fct)
{ n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); return *this; }
void vec2::set( float x, float y )
{ n[VX] = x; n[VY] = y; }
/******************** vec2 FRIENDS *****************************/
vec2 operator - (const vec2& a)
{ return vec2(-a.n[VX],-a.n[VY]); }
vec2 operator + (const vec2& a, const vec2& b)
{ return vec2(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY]); }
vec2 operator - (const vec2& a, const vec2& b)
{ return vec2(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY]); }
vec2 operator * (const vec2& a, const float d)
{ return vec2(d*a.n[VX], d*a.n[VY]); }
vec2 operator * (const float d, const vec2& a)
{ return a*d; }
vec2 operator * (const mat3& a, const vec2& v) {
vec3 av;
av.n[VX] = a.v[0].n[VX]*v.n[VX] + a.v[0].n[VY]*v.n[VY] + a.v[0].n[VZ];
av.n[VY] = a.v[1].n[VX]*v.n[VX] + a.v[1].n[VY]*v.n[VY] + a.v[1].n[VZ];
av.n[VZ] = a.v[2].n[VX]*v.n[VX] + a.v[2].n[VY]*v.n[VY] + a.v[2].n[VZ];
return av;
}
vec2 operator * (const vec2& v, mat3& a)
{ return a.transpose() * v; }
vec3 operator * (const mat3& a, const vec3& v) {
vec3 av;
av.n[VX] =
a.v[0].n[VX]*v.n[VX] + a.v[0].n[VY]*v.n[VY] + a.v[0].n[VZ]*v.n[VZ];
av.n[VY] =
a.v[1].n[VX]*v.n[VX] + a.v[1].n[VY]*v.n[VY] + a.v[1].n[VZ]*v.n[VZ];
av.n[VZ] =
a.v[2].n[VX]*v.n[VX] + a.v[2].n[VY]*v.n[VY] + a.v[2].n[VZ]*v.n[VZ];
return av;
}
vec3 operator * (const vec3& v, mat3& a)
{ return a.transpose() * v; }
float operator * (const vec2& a, const vec2& b)
{ return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY]); }
vec2 operator / (const vec2& a, const float d)
{ float d_inv = 1./d; return vec2(a.n[VX]*d_inv, a.n[VY]*d_inv); }
vec3 operator ^ (const vec2& a, const vec2& b)
{ return vec3(0.0, 0.0, a.n[VX] * b.n[VY] - b.n[VX] * a.n[VY]); }
int operator == (const vec2& a, const vec2& b)
{ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]); }
int operator != (const vec2& a, const vec2& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, vec2& v)
{ return s << "| " << v.n[VX] << ' ' << v.n[VY] << " |"; }
*/
/*istream& operator >> (istream& s, vec2& v) {
vec2 v_tmp;
char c = ' ';
while (isspace(c))
s >> c;
// The vectors can be formatted either as x y or | x y |
if (c == '|') {
s >> v_tmp[VX] >> v_tmp[VY];
while (s >> c && isspace(c)) ;
if (c != '|')
;//s.set(_bad);
}
else {
s.putback(c);
s >> v_tmp[VX] >> v_tmp[VY];
}
if (s)
v = v_tmp;
return s;
}
*/
void swap(vec2& a, vec2& b)
{ vec2 tmp(a); a = b; b = tmp; }
vec2 min(const vec2& a, const vec2& b)
{ return vec2(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY])); }
vec2 max(const vec2& a, const vec2& b)
{ return vec2(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY])); }
vec2 prod(const vec2& a, const vec2& b)
{ return vec2(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY]); }
/****************************************************************
* *
* vec3 Member functions *
* *
****************************************************************/
// CONSTRUCTORS
vec3::vec3(void)
{n[VX] = n[VY] = n[VZ] = 0.0;}
vec3::vec3(const float x, const float y, const float z)
{ n[VX] = x; n[VY] = y; n[VZ] = z; }
vec3::vec3(const float d)
{ n[VX] = n[VY] = n[VZ] = d; }
vec3::vec3(const vec3& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; }
vec3::vec3(const vec2& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = 1.0; }
vec3::vec3(const vec2& v, float d)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = d; }
vec3::vec3(const vec4& v) // it is up to caller to avoid divide-by-zero
{ n[VX] = v.n[VX] / v.n[VW]; n[VY] = v.n[VY] / v.n[VW];
n[VZ] = v.n[VZ] / v.n[VW]; }
vec3::vec3(const vec4& v, int dropAxis) {
switch (dropAxis) {
case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
case VZ: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VW]; break;
default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; break;
}
}
// ASSIGNMENT OPERATORS
vec3& vec3::operator = (const vec3& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; return *this; }
vec3& vec3::operator += ( const vec3& v )
{ n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; return *this; }
vec3& vec3::operator -= ( const vec3& v )
{ n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; return *this; }
vec3& vec3::operator *= ( const float d )
{ n[VX] *= d; n[VY] *= d; n[VZ] *= d; return *this; }
vec3& vec3::operator /= ( const float d )
{ float d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
return *this; }
float& vec3::operator [] ( int i) {
if (i < VX || i > VZ)
//VEC_ERROR("vec3 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("vec3 [] operator: illegal access" );
return n[i];
}
// SPECIAL FUNCTIONS
float vec3::length(void)
{ return sqrt(length2()); }
float vec3::length2(void)
{ return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ]; }
vec3& vec3::normalize(void) // it is up to caller to avoid divide-by-zero
{ *this /= length(); return *this; }
vec3& vec3::homogenize(void) // it is up to caller to avoid divide-by-zero
{ n[VX] /= n[VZ]; n[VY] /= n[VZ]; n[VZ] = 1.0; return *this; }
vec3& vec3::apply(V_FCT_PTR fct)
{ n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
return *this; }
void vec3::set( float x, float y, float z ) // set vector
{ n[VX] = x; n[VY] = y; n[VZ] = z; }
void vec3::print( FILE *file, char *name ) // print vector to a file
{
fprintf( file, "%s: <%f, %f, %f>\n", name, n[VX], n[VY], n[VZ] );
}
// FRIENDS
vec3 operator - (const vec3& a)
{ return vec3(-a.n[VX],-a.n[VY],-a.n[VZ]); }
vec3 operator + (const vec3& a, const vec3& b)
{ return vec3(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ]); }
vec3 operator - (const vec3& a, const vec3& b)
{ return vec3(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY], a.n[VZ]-b.n[VZ]); }
vec3 operator * (const vec3& a, const float d)
{ return vec3(d*a.n[VX], d*a.n[VY], d*a.n[VZ]); }
vec3 operator * (const float d, const vec3& a)
{ return a*d; }
vec3 operator * (const mat4& a, const vec3& v)
{ return a * vec4(v); }
vec3 operator * (const vec3& v, mat4& a)
{ return a.transpose() * v; }
float operator * (const vec3& a, const vec3& b)
{ return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ]); }
vec3 operator / (const vec3& a, const float d)
{ float d_inv = 1./d; return vec3(a.n[VX]*d_inv, a.n[VY]*d_inv,
a.n[VZ]*d_inv); }
vec3 operator ^ (const vec3& a, const vec3& b) {
return vec3(a.n[VY]*b.n[VZ] - a.n[VZ]*b.n[VY],
a.n[VZ]*b.n[VX] - a.n[VX]*b.n[VZ],
a.n[VX]*b.n[VY] - a.n[VY]*b.n[VX]);
}
int operator == (const vec3& a, const vec3& b)
{ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ]);
}
int operator != (const vec3& a, const vec3& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, vec3& v)
{ return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << " |"; }
istream& operator >> (istream& s, vec3& v) {
vec3 v_tmp;
char c = ' ';
while (isspace(c))
s >> c;
// The vectors can be formatted either as x y z or | x y z |
if (c == '|') {
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
while (s >> c && isspace(c)) ;
if (c != '|')
;//s.set(_bad);
}
else {
s.putback(c);
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
}
if (s)
v = v_tmp;
return s;
}
*/
void swap(vec3& a, vec3& b)
{ vec3 tmp(a); a = b; b = tmp; }
vec3 min(const vec3& a, const vec3& b)
{ return vec3(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
b.n[VZ])); }
vec3 max(const vec3& a, const vec3& b)
{ return vec3(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
b.n[VZ])); }
vec3 prod(const vec3& a, const vec3& b)
{ return vec3(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ]); }
/****************************************************************
* *
* vec4 Member functions *
* *
****************************************************************/
// CONSTRUCTORS
vec4::vec4(void)
{n[VX] = n[VY] = n[VZ] = 0.0; n[VW] = 1.0; }
vec4::vec4(const float x, const float y, const float z, const float w)
{ n[VX] = x; n[VY] = y; n[VZ] = z; n[VW] = w; }
vec4::vec4(const float d)
{ n[VX] = n[VY] = n[VZ] = n[VW] = d; }
vec4::vec4(const vec4& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW]; }
vec4::vec4(const vec3& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = 1.0; }
vec4::vec4(const vec3& v, const float d)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = d; }
// ASSIGNMENT OPERATORS
vec4& vec4::operator = (const vec4& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW];
return *this; }
vec4& vec4::operator += ( const vec4& v )
{ n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; n[VW] += v.n[VW];
return *this; }
vec4& vec4::operator -= ( const vec4& v )
{ n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; n[VW] -= v.n[VW];
return *this; }
vec4& vec4::operator *= ( const float d )
{ n[VX] *= d; n[VY] *= d; n[VZ] *= d; n[VW] *= d; return *this; }
vec4& vec4::operator /= ( const float d )
{ float d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
n[VW] *= d_inv; return *this; }
float& vec4::operator [] ( int i) {
if (i < VX || i > VW)
//VEC_ERROR("vec4 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("vec4 [] operator: illegal access" );
return n[i];
}
// SPECIAL FUNCTIONS
float vec4::length(void)
{ return sqrt(length2()); }
float vec4::length2(void)
{ return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ] + n[VW]*n[VW]; }
vec4& vec4::normalize(void) // it is up to caller to avoid divide-by-zero
{ *this /= length(); return *this; }
vec4& vec4::homogenize(void) // it is up to caller to avoid divide-by-zero
{ n[VX] /= n[VW]; n[VY] /= n[VW]; n[VZ] /= n[VW]; n[VW] = 1.0; return *this; }
vec4& vec4::apply(V_FCT_PTR fct)
{ n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
n[VW] = (*fct)(n[VW]); return *this; }
void vec4::print( FILE *file, char *name ) // print vector to a file
{
fprintf( file, "%s: <%f, %f, %f, %f>\n", name, n[VX], n[VY], n[VZ], n[VW] );
}
void vec4::set( float x, float y, float z, float a )
{
n[0] = x; n[1] = y; n[2] = z; n[3] = a;
}
// FRIENDS
vec4 operator - (const vec4& a)
{ return vec4(-a.n[VX],-a.n[VY],-a.n[VZ],-a.n[VW]); }
vec4 operator + (const vec4& a, const vec4& b)
{ return vec4(a.n[VX] + b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ],
a.n[VW] + b.n[VW]); }
vec4 operator - (const vec4& a, const vec4& b)
{ return vec4(a.n[VX] - b.n[VX], a.n[VY] - b.n[VY], a.n[VZ] - b.n[VZ],
a.n[VW] - b.n[VW]); }
vec4 operator * (const vec4& a, const float d)
{ return vec4(d*a.n[VX], d*a.n[VY], d*a.n[VZ], d*a.n[VW] ); }
vec4 operator * (const float d, const vec4& a)
{ return a*d; }
vec4 operator * (const mat4& a, const vec4& v) {
#define ROWCOL(i) a.v[i].n[0]*v.n[VX] + a.v[i].n[1]*v.n[VY] \
+ a.v[i].n[2]*v.n[VZ] + a.v[i].n[3]*v.n[VW]
return vec4(ROWCOL(0), ROWCOL(1), ROWCOL(2), ROWCOL(3));
#undef ROWCOL
}
vec4 operator * (const vec4& v, mat4& a)
{ return a.transpose() * v; }
float operator * (const vec4& a, const vec4& b)
{ return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ] +
a.n[VW]*b.n[VW]); }
vec4 operator / (const vec4& a, const float d)
{ float d_inv = 1./d; return vec4(a.n[VX]*d_inv, a.n[VY]*d_inv, a.n[VZ]*d_inv,
a.n[VW]*d_inv); }
int operator == (const vec4& a, const vec4& b)
{ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ])
&& (a.n[VW] == b.n[VW]); }
int operator != (const vec4& a, const vec4& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, vec4& v)
{ return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << ' '
<< v.n[VW] << " |"; }
istream& operator >> (istream& s, vec4& v) {
vec4 v_tmp;
char c = ' ';
while (isspace(c))
s >> c;
// The vectors can be formatted either as x y z w or | x y z w |
if (c == '|') {
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
while (s >> c && isspace(c)) ;
if (c != '|')
;//s.set(_bad);
}
else {
s.putback(c);
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
}
if (s)
v = v_tmp;
return s;
}
*/
void swap(vec4& a, vec4& b)
{ vec4 tmp(a); a = b; b = tmp; }
vec4 min(const vec4& a, const vec4& b)
{ return vec4(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
b.n[VZ]), MIN(a.n[VW], b.n[VW])); }
vec4 max(const vec4& a, const vec4& b)
{ return vec4(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
b.n[VZ]), MAX(a.n[VW], b.n[VW])); }
vec4 prod(const vec4& a, const vec4& b)
{ return vec4(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ],
a.n[VW] * b.n[VW]); }
/****************************************************************
* *
* mat3 member functions *
* *
****************************************************************/
// CONSTRUCTORS
mat3::mat3(void) { *this = identity2D(); }
mat3::mat3(const vec3& v0, const vec3& v1, const vec3& v2)
{ this->set( v0, v1, v2 ); };
mat3::mat3(const float d)
{ v[0] = v[1] = v[2] = vec3(d); }
mat3::mat3(const mat3& m)
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; }
// ASSIGNMENT OPERATORS
mat3& mat3::operator = ( const mat3& m )
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; return *this; }
mat3& mat3::operator += ( const mat3& m )
{ v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; return *this; }
mat3& mat3::operator -= ( const mat3& m )
{ v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; return *this; }
mat3& mat3::operator *= ( const float d )
{ v[0] *= d; v[1] *= d; v[2] *= d; return *this; }
mat3& mat3::operator /= ( const float d )
{ v[0] /= d; v[1] /= d; v[2] /= d; return *this; }
vec3& mat3::operator [] ( int i) {
if (i < VX || i > VZ)
//VEC_ERROR("mat3 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("mat3 [] operator: illegal access" );
return v[i];
}
void mat3::set( const vec3& v0, const vec3& v1, const vec3& v2 ) {
v[0] = v0; v[1] = v1; v[2] = v2;
}
// SPECIAL FUNCTIONS
mat3 mat3::transpose(void) {
return mat3(vec3(v[0][0], v[1][0], v[2][0]),
vec3(v[0][1], v[1][1], v[2][1]),
vec3(v[0][2], v[1][2], v[2][2]));
}
mat3 mat3::inverse(void) // Gauss-Jordan elimination with partial pivoting
{
mat3 a(*this), // As a evolves from original mat into identity
b(identity2D()); // b evolves from identity into inverse(a)
int i, j, i1;
// Loop over cols of a from left to right, eliminating above and below diag
for (j=0; j<3; j++) { // Find largest pivot in column j among rows j..2
i1 = j; // Row with largest pivot candidate
for (i=j+1; i<3; i++)
if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
i1 = i;
// Swap rows i1 and j in a and b to put pivot on diagonal
swap(a.v[i1], a.v[j]);
swap(b.v[i1], b.v[j]);
// Scale row j to have a unit diagonal
if (a.v[j].n[j]==0.)
VEC_ERROR("mat3::inverse: singular matrix; can't invert\n");
b.v[j] /= a.v[j].n[j];
a.v[j] /= a.v[j].n[j];
// Eliminate off-diagonal elems in col j of a, doing identical ops to b
for (i=0; i<3; i++)
if (i!=j) {
b.v[i] -= a.v[i].n[j]*b.v[j];
a.v[i] -= a.v[i].n[j]*a.v[j];
}
}
return b;
}
mat3& mat3::apply(V_FCT_PTR fct) {
v[VX].apply(fct);
v[VY].apply(fct);
v[VZ].apply(fct);
return *this;
}
// FRIENDS
mat3 operator - (const mat3& a)
{ return mat3(-a.v[0], -a.v[1], -a.v[2]); }
mat3 operator + (const mat3& a, const mat3& b)
{ return mat3(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2]); }
mat3 operator - (const mat3& a, const mat3& b)
{ return mat3(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2]); }
mat3 operator * (mat3& a, mat3& b) {
#define ROWCOL(i, j) \
a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + a.v[i].n[2]*b.v[2][j]
return mat3(vec3(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)),
vec3(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)),
vec3(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)));
#undef ROWCOL
}
mat3 operator * (const mat3& a, const float d)
{ return mat3(a.v[0] * d, a.v[1] * d, a.v[2] * d); }
mat3 operator * (const float d, const mat3& a)
{ return a*d; }
mat3 operator / (const mat3& a, const float d)
{ return mat3(a.v[0] / d, a.v[1] / d, a.v[2] / d); }
int operator == (const mat3& a, const mat3& b)
{ return (a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]); }
int operator != (const mat3& a, const mat3& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, mat3& m)
{ return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ]; }
istream& operator >> (istream& s, mat3& m) {
mat3 m_tmp;
s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ];
if (s)
m = m_tmp;
return s;
}
*/
void swap(mat3& a, mat3& b)
{ mat3 tmp(a); a = b; b = tmp; }
void mat3::print( FILE *file, char *name )
{
int i, j;
fprintf( stderr, "%s:\n", name );
for( i = 0; i < 3; i++ )
{
fprintf( stderr, " " );
for( j = 0; j < 3; j++ )
{
fprintf( stderr, "%f ", v[i][j] );
}
fprintf( stderr, "\n" );
}
}
/****************************************************************
* *
* mat4 member functions *
* *
****************************************************************/
// CONSTRUCTORS
mat4::mat4(void) { *this = identity3D();}
mat4::mat4(const vec4& v0, const vec4& v1, const vec4& v2, const vec4& v3)
{ v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; }
mat4::mat4(const float d)
{ v[0] = v[1] = v[2] = v[3] = vec4(d); }
mat4::mat4(const mat4& m)
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3]; }
mat4::mat4(const float a00, const float a01, const float a02, const float a03,
const float a10, const float a11, const float a12, const float a13,
const float a20, const float a21, const float a22, const float a23,
const float a30, const float a31, const float a32, const float a33 )
{
v[0][0] = a00; v[0][1] = a01; v[0][2] = a02; v[0][3] = a03;
v[1][0] = a10; v[1][1] = a11; v[1][2] = a12; v[1][3] = a13;
v[2][0] = a20; v[2][1] = a21; v[2][2] = a22; v[2][3] = a23;
v[3][0] = a30; v[3][1] = a31; v[3][2] = a32; v[3][3] = a33;
}
// ASSIGNMENT OPERATORS
mat4& mat4::operator = ( const mat4& m )
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3];
return *this; }
mat4& mat4::operator += ( const mat4& m )
{ v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; v[3] += m.v[3];
return *this; }
mat4& mat4::operator -= ( const mat4& m )
{ v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; v[3] -= m.v[3];
return *this; }
mat4& mat4::operator *= ( const float d )
{ v[0] *= d; v[1] *= d; v[2] *= d; v[3] *= d; return *this; }
mat4& mat4::operator /= ( const float d )
{ v[0] /= d; v[1] /= d; v[2] /= d; v[3] /= d; return *this; }
vec4& mat4::operator [] ( int i) {
if (i < VX || i > VW)
//VEC_ERROR("mat4 [] operator: illegal access; index = " << i << '\n')
VEC_ERROR("mat4 [] operator: illegal access" );
return v[i];
}
// SPECIAL FUNCTIONS;
mat4 mat4::transpose(void) {
return mat4(vec4(v[0][0], v[1][0], v[2][0], v[3][0]),
vec4(v[0][1], v[1][1], v[2][1], v[3][1]),
vec4(v[0][2], v[1][2], v[2][2], v[3][2]),
vec4(v[0][3], v[1][3], v[2][3], v[3][3]));
}
mat4 mat4::inverse(void) // Gauss-Jordan elimination with partial pivoting
{
mat4 a(*this), // As a evolves from original mat into identity
b(identity3D()); // b evolves from identity into inverse(a)
int i, j, i1;
// Loop over cols of a from left to right, eliminating above and below diag
for (j=0; j<4; j++) { // Find largest pivot in column j among rows j..3
i1 = j; // Row with largest pivot candidate
for (i=j+1; i<4; i++)
if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
i1 = i;
// Swap rows i1 and j in a and b to put pivot on diagonal
swap(a.v[i1], a.v[j]);
swap(b.v[i1], b.v[j]);
// Scale row j to have a unit diagonal
if (a.v[j].n[j]==0.)
VEC_ERROR("mat4::inverse: singular matrix; can't invert\n");
b.v[j] /= a.v[j].n[j];
a.v[j] /= a.v[j].n[j];
// Eliminate off-diagonal elems in col j of a, doing identical ops to b
for (i=0; i<4; i++)
if (i!=j) {
b.v[i] -= a.v[i].n[j]*b.v[j];
a.v[i] -= a.v[i].n[j]*a.v[j];
}
}
return b;
}
mat4& mat4::apply(V_FCT_PTR fct)
{ v[VX].apply(fct); v[VY].apply(fct); v[VZ].apply(fct); v[VW].apply(fct);
return *this; }
void mat4::print( FILE *file, char *name )
{
int i, j;
fprintf( stderr, "%s:\n", name );
for( i = 0; i < 4; i++ )
{
fprintf( stderr, " " );
for( j = 0; j < 4; j++ )
{
fprintf( stderr, "%f ", v[i][j] );
}
fprintf( stderr, "\n" );
}
}
void mat4::swap_rows( int i, int j )
{
vec4 t;
t = v[i];
v[i] = v[j];
v[j] = t;
}
void mat4::swap_cols( int i, int j )
{
float t;
int k;
for(k=0; k<4; k++ ) {
t = v[k][i];
v[k][i] = v[k][j];
v[k][j] = t;
}
}
// FRIENDS
mat4 operator - (const mat4& a)
{ return mat4(-a.v[0], -a.v[1], -a.v[2], -a.v[3]); }
mat4 operator + (const mat4& a, const mat4& b)
{ return mat4(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2],
a.v[3] + b.v[3]);
}
mat4 operator - (const mat4& a, const mat4& b)
{ return mat4(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2], a.v[3] - b.v[3]); }
mat4 operator * (mat4& a, mat4& b) {
#define ROWCOL(i, j) a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + \
a.v[i].n[2]*b.v[2][j] + a.v[i].n[3]*b.v[3][j]
return mat4(
vec4(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2), ROWCOL(0,3)),
vec4(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2), ROWCOL(1,3)),
vec4(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2), ROWCOL(2,3)),
vec4(ROWCOL(3,0), ROWCOL(3,1), ROWCOL(3,2), ROWCOL(3,3))
);
}
mat4 operator * (const mat4& a, const float d)
{ return mat4(a.v[0] * d, a.v[1] * d, a.v[2] * d, a.v[3] * d); }
mat4 operator * (const float d, const mat4& a)
{ return a*d; }
mat4 operator / (const mat4& a, const float d)
{ return mat4(a.v[0] / d, a.v[1] / d, a.v[2] / d, a.v[3] / d); }
int operator == (const mat4& a, const mat4& b)
{ return ((a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]) &&
(a.v[3] == b.v[3])); }
int operator != (const mat4& a, const mat4& b)
{ return !(a == b); }
/*ostream& operator << (ostream& s, mat4& m)
{ return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ] << '\n' << m.v[VW]; }
istream& operator >> (istream& s, mat4& m)
{
mat4 m_tmp;
s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ] >> m_tmp[VW];
if (s)
m = m_tmp;
return s;
}
*/
void swap(mat4& a, mat4& b)
{ mat4 tmp(a); a = b; b = tmp; }
/****************************************************************
* *
* 2D functions and 3D functions *
* *
****************************************************************/
mat3 identity2D(void)
{ return mat3(vec3(1.0, 0.0, 0.0),
vec3(0.0, 1.0, 0.0),
vec3(0.0, 0.0, 1.0)); }
mat3 translation2D(vec2& v)
{ return mat3(vec3(1.0, 0.0, v[VX]),
vec3(0.0, 1.0, v[VY]),
vec3(0.0, 0.0, 1.0)); }
mat3 rotation2D(vec2& Center, const float angleDeg) {
float angleRad = angleDeg * M_PI / 180.0,
c = cos(angleRad),
s = sin(angleRad);
return mat3(vec3(c, -s, Center[VX] * (1.0-c) + Center[VY] * s),
vec3(s, c, Center[VY] * (1.0-c) - Center[VX] * s),
vec3(0.0, 0.0, 1.0));
}
mat3 scaling2D(vec2& scaleVector)
{ return mat3(vec3(scaleVector[VX], 0.0, 0.0),
vec3(0.0, scaleVector[VY], 0.0),
vec3(0.0, 0.0, 1.0)); }
mat4 identity3D(void)
{ return mat4(vec4(1.0, 0.0, 0.0, 0.0),
vec4(0.0, 1.0, 0.0, 0.0),
vec4(0.0, 0.0, 1.0, 0.0),
vec4(0.0, 0.0, 0.0, 1.0)); }
mat4 translation3D(vec3& v)
{ return mat4(vec4(1.0, 0.0, 0.0, v[VX]),
vec4(0.0, 1.0, 0.0, v[VY]),
vec4(0.0, 0.0, 1.0, v[VZ]),
vec4(0.0, 0.0, 0.0, 1.0)); }
mat4 rotation3D(vec3& Axis, const float angleDeg) {
float angleRad = angleDeg * M_PI / 180.0,
c = cos(angleRad),
s = sin(angleRad),
t = 1.0 - c;
Axis.normalize();
return mat4(vec4(t * Axis[VX] * Axis[VX] + c,
t * Axis[VX] * Axis[VY] - s * Axis[VZ],
t * Axis[VX] * Axis[VZ] + s * Axis[VY],
0.0),
vec4(t * Axis[VX] * Axis[VY] + s * Axis[VZ],
t * Axis[VY] * Axis[VY] + c,
t * Axis[VY] * Axis[VZ] - s * Axis[VX],
0.0),
vec4(t * Axis[VX] * Axis[VZ] - s * Axis[VY],
t * Axis[VY] * Axis[VZ] + s * Axis[VX],