|
| 1 | +# Java8-进阶 |
| 2 | + |
| 3 | + |
| 4 | +- Map的双重循环 |
| 5 | + |
| 6 | + ``` |
| 7 | + //对map的entry对象来做stream操作,使用两次forEach |
| 8 | + Map<String, Long> map = new HashMap<>(); |
| 9 | + crowdMap.entrySet().stream() |
| 10 | + .map(Map.Entry::getValue) |
| 11 | + .forEach(x -> x.entrySet().forEach(y -> { |
| 12 | + if (map.containsKey(y.getKey())) |
| 13 | + map.put(y.getKey(), map.get(y.getKey()) + y.getValue()); |
| 14 | + else map.put(y.getKey(), y.getValue()); |
| 15 | + })); |
| 16 | +
|
| 17 | + //对map的entry对象来做stream操作,使用flatMap将stream合并 |
| 18 | + Map<String, Long> map = new HashMap<>(); |
| 19 | + crowdMap.entrySet().stream() |
| 20 | + .map(Map.Entry::getValue) |
| 21 | + .flatMap(x -> x.entrySet().stream()) |
| 22 | + .forEach(y -> { |
| 23 | + if (map.containsKey(y.getKey())) |
| 24 | + map.put(y.getKey(), map.get(y.getKey()) + y.getValue()); |
| 25 | + else map.put(y.getKey(), y.getValue()); |
| 26 | + }); |
| 27 | +
|
| 28 | + //使用map本身的foreach语句 |
| 29 | + Map<String, Long> map = new HashMap<>(); |
| 30 | + crowdMap.forEach((key, value) -> value.forEach((x, y) -> { |
| 31 | + if (map.containsKey(x)) |
| 32 | + map.put(x, map.get(x) + y); |
| 33 | + map.put(x, y); |
| 34 | + })); |
| 35 | + ``` |
| 36 | +
|
| 37 | +- List的多次分组 |
| 38 | +
|
| 39 | + ``` |
| 40 | + //使用groupingBy将ApproveRuleDetail对象分别按照item和detail分组,并计次 |
| 41 | + Map<String, Map<String, Long>> detailMap = approveRuleDetailList.stream() |
| 42 | + .collect(Collectors |
| 43 | + .groupingBy(ApproveRuleDetail::getItem, Collectors. |
| 44 | + groupingBy(ApproveRuleDetail::getDetail, Collectors.counting()))); |
| 45 | + ``` |
| 46 | +
|
| 47 | +- List按照自定义条件分组 |
| 48 | +
|
| 49 | + ``` |
| 50 | + //使用自定义的Function函数,将年龄按照每10岁分组 |
| 51 | + Function<Integer, Integer> ageGroup = x -> x / 10; |
| 52 | + Map<Integer, List<StatisticsPipeline>> ageMap = statisticsPipelineList |
| 53 | + .stream() |
| 54 | + .collect(Collectors.groupingBy(y -> ageGroup.apply(y.getAge()))); |
| 55 | + ``` |
| 56 | +
|
| 57 | + ``` |
| 58 | + //将年龄按不同方式分组 |
| 59 | + Function<Integer, Integer> ageCredit = x -> { |
| 60 | + if (x <= 18) |
| 61 | + return 18; |
| 62 | + else if (x >= 40) |
| 63 | + return 40; |
| 64 | + else return x; |
| 65 | + }; |
| 66 | +
|
| 67 | + //将StatisticsPipeline转化为suggestion |
| 68 | + ToDoubleFunction<StatisticsPipeline> mapper = StatisticsPipeline::getSuggestion; |
| 69 | +
|
| 70 | + //将人群按照不同年龄分组,并计算每个年龄段的suggestion的平均值 |
| 71 | + Map<Integer, Double> ageCreditMap = statisticsPipelineList |
| 72 | + .stream() |
| 73 | + .collect(Collectors.groupingBy(y -> ageCredit.apply(y.getAge()), Collectors.averagingDouble(mapper))); |
| 74 | + ``` |
| 75 | +
|
| 76 | +- 多个数据求集合 |
| 77 | +
|
| 78 | + ``` |
| 79 | + //合并数据 |
| 80 | + private BiFunction<Integer[], ApprovePipeline, Integer[]> accumulator = (x, y) -> new Integer[]{ |
| 81 | + x[0] + y.getAuth(), x[1] + y.getAntiFraud(), x[2] + y.getCreditRule(), x[3] + y.getModelReject(), x[4] + y.getSuggestion() |
| 82 | + }; |
| 83 | +
|
| 84 | + //合并集合 |
| 85 | + private BinaryOperator<Integer[]> combiner = (x, y) -> new Integer[]{x[0] + y[0], x[1] + y[1], x[2] + y[2], x[3] + y[3], x[4] + y[4]}; |
| 86 | +
|
| 87 | + //将ApprovePipeline对象的不同数据相加 |
| 88 | + Integer[] detail = approvePipelineList.stream().reduce(new Integer[]{0, 0, 0, 0, 0}, accumulator, combiner); |
| 89 | + ``` |
| 90 | +
|
| 91 | +- 多个数据求集合-多重合并 |
| 92 | +
|
| 93 | + ``` |
| 94 | + private BiFunction<Integer[], ApprovePipeline, Integer[]> accumulator = (x, y) -> new Integer[]{ |
| 95 | + x[0] += y.getAuth(), x[1] += y.getAntiFraud(), x[2] += y.getCreditRule(), x[3] += y.getModelReject(), x[4] += y.getSuggestion() |
| 96 | + }; |
| 97 | + //合并数据 |
| 98 | + BiFunction<Integer[], Map.Entry<String, List<ApprovePipeline>>, Integer[]> newAccumulator = (x, y) -> { |
| 99 | + List<ApprovePipeline> pipelineList = y.getValue(); |
| 100 | + Integer[] data = pipelineList.stream().reduce(new Integer[]{0, 0, 0, 0, 0}, accumulator, combiner); |
| 101 | + return new Integer[]{ |
| 102 | + x[0] += data[0], x[1] += data[1], x[2] += data[2], x[3] += data[3], x[4] += data[4] |
| 103 | + }; |
| 104 | + }; |
| 105 | + //最终reduce |
| 106 | + Integer[] total = channelMap.entrySet().stream().reduce(new Integer[]{0, 0, 0, 0, 0}, newAccumulator, combiner); |
| 107 | + ``` |
| 108 | +
|
| 109 | +- map最大多项和 |
| 110 | +
|
| 111 | + ``` |
| 112 | + Long hourC3 = hourMap.entrySet().stream().mapToLong(Map.Entry::getValue).sorted().limit(3).sum(); |
| 113 | + ``` |
0 commit comments