-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_with_weight.py
248 lines (207 loc) · 10.3 KB
/
train_with_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import sys
import torch
import argparse
import logging
import torch.nn as nn
from tqdm import tqdm
# dataset
from data.implement import BasicDataset_with_weight, train_transform, BasicDataset_without_weight
from torch.utils.data import DataLoader
# tensorboard & distrubuted
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
# model
from model import UNet
from optimizer import optim_ranger
from scheduler import scheduler_linear
from loss import loss_bce
from utils import eval_net_unet_dice, eval_net_unet_miou, eval_net_unet_bfscore
from torch.cuda.amp import GradScaler, autocast
class criterion(nn.Module):
# zero block 是将权重为 0 的样本赋值为一个固定值
def __init__(self, zero_value):
super(criterion, self).__init__()
self.zero_value = zero_value
def forward(self, true, pred, score):
loss = 0
for idx, sample in enumerate(zip(true, pred, score)):
sample_true = sample[0]
sample_pred = sample[1]
sample_score = sample[2]
sample_loss = loss_func(sample_true, sample_pred)
if sample_score == 0 or torch.isnan(sample_score):
sample_score = self.zero_value
loss += sample_score * sample_loss
return loss / true.shape[0]
def train_net(net,
device,
epochs=5,
lr=0.1,
batch_size=8,
save_cp=True):
global dir_checkpoint
net.to(device)
train_dataset = BasicDataset_with_weight(file_csv=args.train_csv,
transform=train_transform)
val_dataset = BasicDataset_with_weight(file_csv=args.valid_csv,
transform=train_transform)
test_dataset = BasicDataset_without_weight(file_csv=args.test_csv,
transform=train_transform)
train_dataloader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
valid_dataloader = DataLoader(
val_dataset, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True, drop_last=True)
test_dataloader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True, drop_last=True)
writer = SummaryWriter(comment="_{}".format(args.name))
global_step = 0
best_valid_score = 0
best_miou_score = 0
best_bfscore_score = 0
n_train = len(train_dataset)
n_valid = len(val_dataset)
logging.info(
f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Training size: {n_train}
Validation size: {n_valid}
Checkpoints: {save_cp}
Device: {device}
'''
)
scaler = GradScaler()
for epoch in range(epochs):
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc='Epoch {}/{}'.format(epoch + 1, epochs), unit='img') as pbar:
for batch in train_dataloader:
imgs = batch['image']
true_masks = batch['mask']
weight = batch['weight']
assert imgs.shape[1] == net.n_channels, \
'Network has been defined with {} input channels, '.format(
net.n_channels) + 'but loaded images have {} channels. Please check that '.format(
imgs.shape[1]) + 'the images are loaded correctly.'
imgs = imgs.cuda(non_blocking=True)
true_masks = true_masks.cuda(non_blocking=True)
weight = weight.cuda(non_blocking=True)
optimizer.zero_grad()
fp16 = False
if fp16 is True:
with autocast():
mask_pred = net(imgs)
loss = criterion_func(mask_pred, true_masks, weight)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
mask_pred = net(imgs)
loss = criterion_func(mask_pred, true_masks, weight)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
pbar.set_postfix(**{'loss (batch)': loss.item()})
nn.utils.clip_grad_value_(net.parameters(), 0.1)
pbar.update(imgs.shape[0])
global_step += 1
val_bfscore = eval_net_unet_bfscore(net, valid_dataloader, device)
val_miouscore = eval_net_unet_miou(net, valid_dataloader, device)
val_dicescore = eval_net_unet_dice(net, valid_dataloader, device)
val_score = (val_bfscore + val_miouscore + val_dicescore) / 3
scheduler.step()
writer.add_scalar('Train/LR', optimizer.param_groups[0]['lr'], global_step=global_step)
logging.info('Validation score: {}'.format(val_score))
writer.add_scalar('Valid/val_score', val_score, global_step=global_step)
if save_cp:
dir_checkpoint_now = os.path.join(dir_checkpoint, args.name)
if not os.path.exists(dir_checkpoint_now):
os.mkdir(dir_checkpoint_now)
logging.info('Create checkopint directory')
if val_score > best_valid_score:
best_valid_score = val_score
torch.save(net.state_dict(), os.path.join(dir_checkpoint_now, 'best.pth'))
logging.info('Checkpoint {} saved!'.format(epoch + 1))
if val_bfscore > best_bfscore_score:
best_bfscore_score = val_bfscore
torch.save(net.state_dict(), os.path.join(dir_checkpoint_now, 'bfscore_best.pth'))
logging.info('bfscore best Checkpoint {} saved!'.format(epoch + 1))
if val_miouscore > best_miou_score:
best_miou_score = val_miouscore
torch.save(net.state_dict(), os.path.join(dir_checkpoint_now, 'miou_best.pth'))
logging.info('miou best Checkpoint {} saved!'.format(epoch + 1))
writer.add_scalar('Train/Loss', epoch_loss / n_train, global_step=global_step)
net.load_state_dict(torch.load(os.path.join(dir_checkpoint_now, 'best.pth'), map_location=device))
test_mIoU = eval_net_unet_miou(net, test_dataloader, device)
logging.info('Test mIoU: {}'.format(test_mIoU))
writer.add_scalar('test/mIoU', test_mIoU, global_step=global_step)
test_dice = eval_net_unet_dice(net, test_dataloader, device)
logging.info('Test Dice Coeff: {}'.format(test_dice))
writer.add_scalar('test/Dice', test_dice, global_step=global_step)
test_bfscore = eval_net_unet_bfscore(net, test_dataloader, device)
logging.info('Test BFScore: {}'.format(test_bfscore))
writer.add_scalar('test/BFScore', test_bfscore, global_step=global_step)
net.load_state_dict(torch.load(os.path.join(dir_checkpoint_now, 'bfscore_best.pth'), map_location=device))
test_best_bfscore = eval_net_unet_bfscore(net, test_dataloader, device)
logging.info('Test BFScore: {}'.format(test_best_bfscore))
writer.add_scalar('test/BFScore_best', test_best_bfscore, global_step=global_step)
net.load_state_dict(torch.load(os.path.join(dir_checkpoint_now, 'miou_best.pth'), map_location=device))
test_best_miou = eval_net_unet_miou(net, test_dataloader, device)
logging.info('Test mIoU: {}'.format(test_best_miou))
writer.add_scalar('test/mIoU_best', test_best_miou, global_step=global_step)
writer.close()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=1,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=16,
help='Batch size', dest='batchsize')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.1,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
help='Load model from a .pth file')
parser.add_argument('-train', '--train_csv', dest='train_csv', type=str, default=False,
help='train csv file_path')
parser.add_argument('-valid', '--valid_csv', dest='valid_csv', type=str, default=False,
help='valid csv file_path')
parser.add_argument('-test', '--test_csv', dest='test_csv', type=str, default=False,
help='test csv file_path')
parser.add_argument('-n', '--name', dest='name', type=str, default="",
help='train name')
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
logging.basicConfig(filename=f'logs/{args.name}.log', level=logging.INFO, format='%(levelname)s: %(message)s')
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = UNet(n_classes=1, n_channels=3)
net.n_classes = 1
net.n_channels = 3
dir_checkpoint = 'checkpoints'
loss_dict = {}
optimizer = optim_ranger(net.parameters(), lr=args.lr, weight_decay=0.0005)
scheduler = scheduler_linear(optimizer, step_size=25, gamma=0.5)
loss_func = loss_bce
criterion_func = criterion(zero_value=0)
if args.load:
net.load_state_dict(torch.load(args.load, map_location=device))
logging.info('Model loaded form {}'.format(args.load))
try:
train_net(net=net,
device=device,
epochs=args.epochs,
batch_size=args.batchsize,
lr=args.lr)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)