- 矩阵基本运算以及快速幂模板
- POJ - 3070. Fibonacci
- Hdu - 1757A. Simple Math Problem
- Codeforces - 185A. Plant
先看一下矩阵的乘法规则:
直接给出一个模板题,直接包含了基本的乘法和求幂,求幂的详细解释,可以看这篇乘法快速幂。
注意:
- 矩阵的乘法必须满足第一个矩阵的列 = 第二个矩阵的行;
- 矩阵的求幂必须满足矩阵是一个方阵;
import java.io.BufferedInputStream;
import java.util.Scanner;
public class Main {
static class Matrix {
public int row;
public int col;
public int[][] m;
public Matrix(int row, int col) {
this.row = row;
this.col = col;
m = new int[row][col];
}
}
// 两个矩阵相加 --> a,b必须为 同型矩阵
static Matrix add(Matrix a, Matrix b) {
Matrix c = new Matrix(a.row, a.col);
for (int i = 0; i < a.row; i++) {
for (int j = 0; j < a.col; j++) {
c.m[i][j] = a.m[i][j] + b.m[i][j]; // sub 减法换成-
}
}
return c;
}
// 必须满足a.col = b.row 才能相乘
static Matrix mul(Matrix a, Matrix b) {
Matrix c = new Matrix(a.row, b.col); //注意这里
for (int i = 0; i < a.row; i++) {
for (int j = 0; j < b.col; j++) {
for (int k = 0; k < a.col; k++)
c.m[i][j] = c.m[i][j] + a.m[i][k] * b.m[k][j];
}
}
return c;
}
// 必须为 方阵才能 求幂
static Matrix pow(Matrix a, int k) { // 矩阵 a 的 k次幂
Matrix res = new Matrix(a.row, a.col); //求幂必须满足 a.row = a.col(也就是方阵)
for (int i = 0; i < a.row; i++)
res.m[i][i] = 1;
// 真正的快速幂
while (k > 0) {
if ((k & 1) != 0)
res = mul(res, a);
a = mul(a, a);
k >>= 1;
}
return res;
}
public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
int n = cin.nextInt();
int k = cin.nextInt();
Matrix a = new Matrix(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
a.m[i][j] = cin.nextInt();
}
}
Matrix res = pow(a, k);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (j == n - 1) {
System.out.println(res.m[i][j]);
} else {
System.out.print(res.m[i][j] + " ");
}
}
}
}
}
关键在于推导出递推式,也就是左边是一个A
矩阵,B
一般是一个列向量;
类似的规律:
import java.io.BufferedInputStream;
import java.util.Scanner;
public class Main {
static class Matrix{
public int row;
public int col;
public int[][] m;
public Matrix(int row, int col) {
this.row = row;
this.col = col;
m = new int[row][col];
}
}
static final int mod = 10000;
static Matrix mul(Matrix a,Matrix b){
Matrix c = new Matrix(a.row,b.col); //注意这里
for(int i = 0; i < a.row; i++){
for(int j = 0; j < b.col; j++){
for(int k = 0; k < a.col; k++)
c.m[i][j] = (c.m[i][j] + a.m[i][k]*b.m[k][j]) % mod;
}
}
return c;
}
static Matrix pow(Matrix a,int k){
Matrix res = new Matrix(a.row,a.col); // 方阵
for(int i = 0; i < a.row; i++)
res.m[i][i] = 1;
while(k > 0){
if( (k&1) != 0)
res = mul(res,a);
a = mul(a,a);
k >>= 1;
}
return res;
}
public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
while(cin.hasNext()){
int n = cin.nextInt();
if( n == -1)break;
if(n == 0){
System.out.println(0);
continue;
}
Matrix a = new Matrix(2,2);
a.m[0][0] = a.m[0][1] = a.m[1][0] = 1;
a.m[1][1] = 0;
Matrix res = pow(a,n-1);
System.out.println(res.m[0][0] % mod);
}
}
}
import java.io.BufferedInputStream;
import java.util.Scanner;
public class Main {
static class Matrix{
public int row;
public int col;
public int[][] m;
public Matrix(int row, int col) {
this.row = row;
this.col = col;
m = new int[row][col];
}
}
static Matrix mul(Matrix a,Matrix b,int mod){
Matrix c = new Matrix(a.row,b.col); //注意这里
for(int i = 0; i < a.row; i++){
for(int j = 0; j < b.col; j++){
for(int k = 0; k < a.col; k++)
c.m[i][j] = (c.m[i][j] + a.m[i][k]*b.m[k][j]) % mod;
}
}
return c;
}
static Matrix pow(Matrix a,int k,int mod){
Matrix res = new Matrix(a.row,a.col); // 方阵
for(int i = 0; i < a.row; i++)
res.m[i][i] = 1;
while(k > 0){
if( (k&1) != 0)
res = mul(res,a,mod);
a = mul(a,a,mod);
k >>= 1;
}
return res;
}
public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
while(cin.hasNext()){
int k = cin.nextInt();
int mod = cin.nextInt();
if(k < 10){
System.out.println(k);
continue;
}
Matrix a = new Matrix(10,10);
// init
for(int i = 0; i < 10; i++)
a.m[0][i] = cin.nextInt();
for(int i = 1; i < 10; i++)
a.m[i][i-1] = 1;
// computer matrix ^ (k-9)
Matrix res = pow(a,k-9,mod);
int sum = 0;
for(int i = 0; i < 10; i++)
sum += (res.m[0][i] * (9 - i)) % mod;
System.out.println(sum % mod); // also should mod
}
}
}
import java.io.BufferedInputStream;
import java.util.Scanner;
public class Main {
static class Matrix {
public int row;
public int col;
public long[][] m;
public Matrix(int row, int col) {
this.row = row;
this.col = col;
m = new long[row][col];
}
}
static final int mod = 1000000007;
static Matrix mul(Matrix a, Matrix b) {
Matrix c = new Matrix(a.row, b.col); //注意这里
for (int i = 0; i < a.row; i++) {
for (int j = 0; j < b.col; j++) {
for (int k = 0; k < a.col; k++)
c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
}
}
return c;
}
static Matrix pow(Matrix a, long k) {
Matrix res = new Matrix(a.row, a.col); // 方阵
for (int i = 0; i < a.row; i++)
res.m[i][i] = 1;
while (k > 0) {
if ((k & 1) != 0)
res = mul(res, a);
a = mul(a, a);
k >>= 1;
}
return res;
}
public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
long n = cin.nextLong();
Matrix a = new Matrix(2, 2);
a.m[0][0] = a.m[1][1] = 3;
a.m[0][1] = a.m[1][0] = 1;
Matrix res = pow(a, n);
System.out.println(res.m[0][0] % mod);
}
}