forked from mesolitica/NLP-Models-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
xlnet.py
328 lines (287 loc) · 10.7 KB
/
xlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import tensorflow as tf
import modeling
def _get_initializer(FLAGS):
"""Get variable intializer."""
if FLAGS.init == 'uniform':
initializer = tf.initializers.random_uniform(
minval = -FLAGS.init_range, maxval = FLAGS.init_range, seed = None
)
elif FLAGS.init == 'normal':
initializer = tf.initializers.random_normal(
stddev = FLAGS.init_std, seed = None
)
else:
raise ValueError('Initializer {} not supported'.format(FLAGS.init))
return initializer
class XLNetConfig(object):
"""XLNetConfig contains hyperparameters that are specific to a model checkpoint;
i.e., these hyperparameters should be the same between
pretraining and finetuning.
The following hyperparameters are defined:
n_layer: int, the number of layers.
d_model: int, the hidden size.
n_head: int, the number of attention heads.
d_head: int, the dimension size of each attention head.
d_inner: int, the hidden size in feed-forward layers.
ff_activation: str, "relu" or "gelu".
untie_r: bool, whether to untie the biases in attention.
n_token: int, the vocab size.
"""
def __init__(self, FLAGS = None, json_path = None):
"""Constructing an XLNetConfig.
One of FLAGS or json_path should be provided."""
assert FLAGS is not None or json_path is not None
self.keys = [
'n_layer',
'd_model',
'n_head',
'd_head',
'd_inner',
'ff_activation',
'untie_r',
'n_token',
]
if FLAGS is not None:
self.init_from_flags(FLAGS)
if json_path is not None:
self.init_from_json(json_path)
def init_from_flags(self, FLAGS):
for key in self.keys:
setattr(self, key, getattr(FLAGS, key))
def init_from_json(self, json_path):
with tf.gfile.Open(json_path) as f:
json_data = json.load(f)
for key in self.keys:
setattr(self, key, json_data[key])
def to_json(self, json_path):
"""Save XLNetConfig to a json file."""
json_data = {}
for key in self.keys:
json_data[key] = getattr(self, key)
json_dir = os.path.dirname(json_path)
if not tf.gfile.Exists(json_dir):
tf.gfile.MakeDirs(json_dir)
with tf.gfile.Open(json_path, 'w') as f:
json.dump(json_data, f, indent = 4, sort_keys = True)
def create_run_config(is_training, is_finetune, FLAGS):
kwargs = dict(
is_training = is_training,
use_tpu = FLAGS.use_tpu,
use_bfloat16 = FLAGS.use_bfloat16,
dropout = FLAGS.dropout,
dropatt = FLAGS.dropatt,
init = FLAGS.init,
init_range = FLAGS.init_range,
init_std = FLAGS.init_std,
clamp_len = FLAGS.clamp_len,
)
if not is_finetune:
kwargs.update(
dict(
mem_len = FLAGS.mem_len,
reuse_len = FLAGS.reuse_len,
bi_data = FLAGS.bi_data,
clamp_len = FLAGS.clamp_len,
same_length = FLAGS.same_length,
)
)
return RunConfig(**kwargs)
class RunConfig(object):
"""RunConfig contains hyperparameters that could be different
between pretraining and finetuning.
These hyperparameters can also be changed from run to run.
We store them separately from XLNetConfig for flexibility.
"""
def __init__(
self,
is_training,
use_tpu,
use_bfloat16,
dropout,
dropatt,
init = 'normal',
init_range = 0.1,
init_std = 0.02,
mem_len = None,
reuse_len = None,
bi_data = False,
clamp_len = -1,
same_length = False,
):
"""
Args:
is_training: bool, whether in training mode.
use_tpu: bool, whether TPUs are used.
use_bfloat16: bool, use bfloat16 instead of float32.
dropout: float, dropout rate.
dropatt: float, dropout rate on attention probabilities.
init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform".
init_std: float, initialize the parameters with a normal distribution
with mean 0 and stddev init_std. Only effective when init="normal".
mem_len: int, the number of tokens to cache.
reuse_len: int, the number of tokens in the currect batch to be cached
and reused in the future.
bi_data: bool, whether to use bidirectional input pipeline.
Usually set to True during pretraining and False during finetuning.
clamp_len: int, clamp all relative distances larger than clamp_len.
-1 means no clamping.
same_length: bool, whether to use the same attention length for each token.
"""
self.init = init
self.init_range = init_range
self.init_std = init_std
self.is_training = is_training
self.dropout = dropout
self.dropatt = dropatt
self.use_tpu = use_tpu
self.use_bfloat16 = use_bfloat16
self.mem_len = mem_len
self.reuse_len = reuse_len
self.bi_data = bi_data
self.clamp_len = clamp_len
self.same_length = same_length
class XLNetModel(object):
"""A wrapper of the XLNet model used during both pretraining and finetuning."""
def __init__(
self,
xlnet_config,
run_config,
input_ids,
seg_ids,
input_mask,
mems = None,
perm_mask = None,
target_mapping = None,
inp_q = None,
**kwargs
):
"""
Args:
xlnet_config: XLNetConfig,
run_config: RunConfig,
input_ids: int32 Tensor in shape [len, bsz], the input token IDs.
seg_ids: int32 Tensor in shape [len, bsz], the input segment IDs.
input_mask: float32 Tensor in shape [len, bsz], the input mask.
0 for real tokens and 1 for padding.
mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
from previous batches. The length of the list equals n_layer.
If None, no memory is used.
perm_mask: float32 Tensor in shape [len, len, bsz].
If perm_mask[i, j, k] = 0, i attend to j in batch k;
if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
If None, each position attends to all the others.
target_mapping: float32 Tensor in shape [num_predict, len, bsz].
If target_mapping[i, j, k] = 1, the i-th predict in batch k is
on the j-th token.
Only used during pretraining for partial prediction.
Set to None during finetuning.
inp_q: float32 Tensor in shape [len, bsz].
1 for tokens with losses and 0 for tokens without losses.
Only used during pretraining for two-stream attention.
Set to None during finetuning.
"""
initializer = _get_initializer(run_config)
tfm_args = dict(
n_token = xlnet_config.n_token,
initializer = initializer,
attn_type = 'bi',
n_layer = xlnet_config.n_layer,
d_model = xlnet_config.d_model,
n_head = xlnet_config.n_head,
d_head = xlnet_config.d_head,
d_inner = xlnet_config.d_inner,
ff_activation = xlnet_config.ff_activation,
untie_r = xlnet_config.untie_r,
is_training = run_config.is_training,
use_bfloat16 = run_config.use_bfloat16,
use_tpu = run_config.use_tpu,
dropout = run_config.dropout,
dropatt = run_config.dropatt,
mem_len = run_config.mem_len,
reuse_len = run_config.reuse_len,
bi_data = run_config.bi_data,
clamp_len = run_config.clamp_len,
same_length = run_config.same_length,
)
input_args = dict(
inp_k = input_ids,
seg_id = seg_ids,
input_mask = input_mask,
mems = mems,
perm_mask = perm_mask,
target_mapping = target_mapping,
inp_q = inp_q,
)
tfm_args.update(input_args)
with tf.variable_scope('model', reuse = tf.AUTO_REUSE):
(
self.output,
self.new_mems,
self.lookup_table,
) = modeling.transformer_xl(**tfm_args)
self.input_mask = input_mask
self.initializer = initializer
self.xlnet_config = xlnet_config
self.run_config = run_config
def get_pooled_out(self, summary_type, use_summ_proj = True):
"""
Args:
summary_type: str, "last", "first", "mean", or "attn". The method
to pool the input to get a vector representation.
use_summ_proj: bool, whether to use a linear projection during pooling.
Returns:
float32 Tensor in shape [bsz, d_model], the pooled representation.
"""
xlnet_config = self.xlnet_config
run_config = self.run_config
with tf.variable_scope('model', reuse = tf.AUTO_REUSE):
summary = modeling.summarize_sequence(
summary_type = summary_type,
hidden = self.output,
d_model = xlnet_config.d_model,
n_head = xlnet_config.n_head,
d_head = xlnet_config.d_head,
dropout = run_config.dropout,
dropatt = run_config.dropatt,
is_training = run_config.is_training,
input_mask = self.input_mask,
initializer = self.initializer,
use_proj = use_summ_proj,
)
return summary
def get_sequence_output(self):
"""
Returns:
float32 Tensor in shape [len, bsz, d_model]. The last layer hidden
representation of XLNet.
"""
return self.output
def get_new_memory(self):
"""
Returns:
list of float32 Tensors in shape [mem_len, bsz, d_model], the new
memory that concatenates the previous memory with the current input
representations.
The length of the list equals n_layer.
"""
return self.new_mems
def get_embedding_table(self):
"""
Returns:
float32 Tensor in shape [n_token, d_model]. The embedding lookup table.
Used for tying embeddings between input and output layers.
"""
return self.lookup_table
def get_initializer(self):
"""
Returns:
A tf initializer. Used to initialize variables in layers on top of XLNet.
"""
return self.initializer