forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·542 lines (427 loc) · 18.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import subprocess
import sys
import argparse
import tempfile
import warnings
import copy
from paddlerec.core.factory import TrainerFactory
from paddlerec.core.utils import envs
from paddlerec.core.utils import util
from paddlerec.core.utils import validation
engines = {}
device = ["CPU", "GPU"]
engine_choices = ["TRAIN", "INFER", "LOCAL_CLUSTER_TRAIN", "CLUSTER_TRAIN"]
def engine_registry():
engines["TRANSPILER"] = {}
engines["PSLIB"] = {}
engines["TRANSPILER"]["TRAIN"] = single_train_engine
engines["TRANSPILER"]["INFER"] = single_infer_engine
engines["TRANSPILER"]["LOCAL_CLUSTER_TRAIN"] = local_cluster_engine
engines["TRANSPILER"]["CLUSTER"] = cluster_engine
engines["PSLIB"]["TRAIN"] = local_mpi_engine
engines["PSLIB"]["LOCAL_CLUSTER_TRAIN"] = local_mpi_engine
engines["PSLIB"]["CLUSTER_TRAIN"] = cluster_mpi_engine
engines["PSLIB"]["CLUSTER"] = cluster_mpi_engine
def get_inters_from_yaml(file, filters):
_envs = envs.load_yaml(file)
flattens = envs.flatten_environs(_envs)
inters = {}
for k, v in flattens.items():
for f in filters:
if k.startswith(f):
inters[k] = v
return inters
def get_all_inters_from_yaml(file, filters):
_envs = envs.load_yaml(file)
all_flattens = {}
def fatten_env_namespace(namespace_nests, local_envs):
for k, v in local_envs.items():
if isinstance(v, dict):
nests = copy.deepcopy(namespace_nests)
nests.append(k)
fatten_env_namespace(nests, v)
elif (k == "dataset" or k == "phase" or
k == "runner") and isinstance(v, list):
for i in v:
if i.get("name") is None:
raise ValueError("name must be in dataset list. ", v)
nests = copy.deepcopy(namespace_nests)
nests.append(k)
nests.append(i["name"])
fatten_env_namespace(nests, i)
else:
global_k = ".".join(namespace_nests + [k])
all_flattens[global_k] = v
fatten_env_namespace([], _envs)
ret = {}
for k, v in all_flattens.items():
for f in filters:
if k.startswith(f):
ret[k] = v
return ret
def get_modes(running_config):
if not isinstance(running_config, dict):
raise ValueError("get_modes arguments must be [dict]")
modes = running_config.get("mode")
if not modes:
raise ValueError("yaml mast have config: mode")
if isinstance(modes, str):
modes = [modes]
return modes
def get_engine(args, running_config, mode):
transpiler = get_transpiler()
engine_class = ".".join(["runner", mode, "class"])
engine_device = ".".join(["runner", mode, "device"])
device_gpu_choices = ".".join(["runner", mode, "selected_gpus"])
engine = running_config.get(engine_class, None)
if engine is None:
raise ValueError("not find {} in yaml, please check".format(
mode, engine_class))
device = running_config.get(engine_device, None)
engine = engine.upper()
device = device.upper()
if device is None:
print("not find device be specified in yaml, set CPU as default")
device = "CPU"
if device == "GPU":
selected_gpus = running_config.get(device_gpu_choices, None)
if selected_gpus is None:
print(
"not find selected_gpus be specified in yaml, set `0` as default"
)
selected_gpus = "0"
else:
print("selected_gpus {} will be specified for running".format(
selected_gpus))
selected_gpus_num = len(selected_gpus.split(","))
if selected_gpus_num > 1:
engine = "LOCAL_CLUSTER_TRAIN"
if engine not in engine_choices:
raise ValueError("{} can only be chosen in {}".format(engine_class,
engine_choices))
run_engine = engines[transpiler].get(engine, None)
return run_engine
def get_transpiler():
FNULL = open(os.devnull, 'w')
cmd = [
"python", "-c",
"import paddle.fluid as fluid; fleet_ptr = fluid.core.Fleet(); [fleet_ptr.copy_table_by_feasign(10, 10, [2020, 1010])];"
]
proc = subprocess.Popen(cmd, stdout=FNULL, stderr=FNULL, cwd=os.getcwd())
ret = proc.wait()
if ret == -11:
return "PSLIB"
else:
return "TRANSPILER"
def set_runtime_envs(cluster_envs, engine_yaml):
if cluster_envs is None:
cluster_envs = {}
envs.set_runtime_environs(cluster_envs)
need_print = {}
for k, v in os.environ.items():
if k.startswith("train.trainer."):
need_print[k] = v
print(envs.pretty_print_envs(need_print, ("Runtime Envs", "Value")))
def single_train_engine(args):
run_extras = get_all_inters_from_yaml(args.model, ["runner."])
mode = envs.get_runtime_environ("mode")
trainer_class = ".".join(["runner", mode, "trainer_class"])
fleet_class = ".".join(["runner", mode, "fleet_mode"])
device_class = ".".join(["runner", mode, "device"])
selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])
trainer = run_extras.get(trainer_class, "GeneralTrainer")
fleet_mode = run_extras.get(fleet_class, "ps")
device = run_extras.get(device_class, "cpu")
selected_gpus = run_extras.get(selected_gpus_class, "0")
executor_mode = "train"
single_envs = {}
if device.upper() == "GPU":
selected_gpus_num = len(selected_gpus.split(","))
if selected_gpus_num != 1:
raise ValueError(
"Single Mode Only Support One GPU, Set Local Cluster Mode to use Multi-GPUS"
)
single_envs["selsected_gpus"] = selected_gpus
single_envs["FLAGS_selected_gpus"] = selected_gpus
single_envs["train.trainer.trainer"] = trainer
single_envs["fleet_mode"] = fleet_mode
single_envs["train.trainer.executor_mode"] = executor_mode
single_envs["train.trainer.threads"] = "2"
single_envs["train.trainer.platform"] = envs.get_platform()
single_envs["train.trainer.engine"] = "single"
set_runtime_envs(single_envs, args.model)
trainer = TrainerFactory.create(args.model)
return trainer
def single_infer_engine(args):
run_extras = get_all_inters_from_yaml(args.model, ["runner."])
mode = envs.get_runtime_environ("mode")
trainer_class = ".".join(["runner", mode, "trainer_class"])
fleet_class = ".".join(["runner", mode, "fleet_mode"])
device_class = ".".join(["runner", mode, "device"])
selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])
epochs_class = ".".join(["runner", mode, "epochs"])
epochs = run_extras.get(epochs_class, 1)
if epochs > 1:
warnings.warn(
"It makes no sense to predict the same model for multiple epochs",
category=UserWarning,
stacklevel=2)
trainer = run_extras.get(trainer_class, "GeneralTrainer")
fleet_mode = run_extras.get(fleet_class, "ps")
device = run_extras.get(device_class, "cpu")
selected_gpus = run_extras.get(selected_gpus_class, "0")
executor_mode = "infer"
single_envs = {}
if device.upper() == "GPU":
selected_gpus_num = len(selected_gpus.split(","))
if selected_gpus_num != 1:
raise ValueError(
"Single Mode Only Support One GPU, Set Local Cluster Mode to use Multi-GPUS"
)
single_envs["selsected_gpus"] = selected_gpus
single_envs["FLAGS_selected_gpus"] = selected_gpus
single_envs["train.trainer.trainer"] = trainer
single_envs["train.trainer.executor_mode"] = executor_mode
single_envs["fleet_mode"] = fleet_mode
single_envs["train.trainer.threads"] = "2"
single_envs["train.trainer.platform"] = envs.get_platform()
single_envs["train.trainer.engine"] = "single"
set_runtime_envs(single_envs, args.model)
trainer = TrainerFactory.create(args.model)
return trainer
def cluster_engine(args):
def master():
from paddlerec.core.engine.cluster.cluster import ClusterEngine
_envs = envs.load_yaml(args.backend)
flattens = envs.flatten_environs(_envs, "_")
flattens["engine_role"] = "MASTER"
flattens["engine_mode"] = envs.get_runtime_environ("mode")
flattens["engine_run_config"] = args.model
flattens["engine_temp_path"] = tempfile.mkdtemp()
envs.set_runtime_environs(flattens)
ClusterEngine.workspace_replace()
print(envs.pretty_print_envs(flattens, ("Submit Envs", "Value")))
launch = ClusterEngine(None, args.model)
return launch
def worker(mode):
if not mode:
raise ValueError("mode: {} can not be recognized")
run_extras = get_all_inters_from_yaml(args.model, ["runner."])
trainer_class = ".".join(["runner", mode, "trainer_class"])
fleet_class = ".".join(["runner", mode, "fleet_mode"])
device_class = ".".join(["runner", mode, "device"])
selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])
strategy_class = ".".join(["runner", mode, "distribute_strategy"])
worker_class = ".".join(["runner", mode, "worker_num"])
server_class = ".".join(["runner", mode, "server_num"])
trainer = run_extras.get(trainer_class, "GeneralTrainer")
fleet_mode = run_extras.get(fleet_class, "ps")
device = run_extras.get(device_class, "cpu")
selected_gpus = run_extras.get(selected_gpus_class, "0")
distributed_strategy = run_extras.get(strategy_class, "async")
worker_num = run_extras.get(worker_class, 1)
server_num = run_extras.get(server_class, 1)
executor_mode = "train"
device = device.upper()
fleet_mode = fleet_mode.upper()
if fleet_mode == "COLLECTIVE" and device != "GPU":
raise ValueError("COLLECTIVE can not be used with GPU")
cluster_envs = {}
if device == "GPU":
cluster_envs["selected_gpus"] = selected_gpus
cluster_envs["server_num"] = server_num
cluster_envs["worker_num"] = worker_num
cluster_envs["fleet_mode"] = fleet_mode
cluster_envs["train.trainer.trainer"] = trainer
cluster_envs["train.trainer.engine"] = "cluster"
cluster_envs["train.trainer.executor_mode"] = executor_mode
cluster_envs["train.trainer.strategy"] = distributed_strategy
cluster_envs["train.trainer.threads"] = envs.get_runtime_environ(
"CPU_NUM")
cluster_envs["train.trainer.platform"] = envs.get_platform()
print("launch {} engine with cluster to with model: {}".format(
trainer, args.model))
set_runtime_envs(cluster_envs, args.model)
trainer = TrainerFactory.create(args.model)
return trainer
role = os.getenv("PADDLE_PADDLEREC_ROLE", "MASTER")
if role == "WORKER":
mode = os.getenv("PADDLE_PADDLEREC_MODE", None)
return worker(mode)
else:
return master()
def cluster_mpi_engine(args):
print("launch cluster engine with cluster to run model: {}".format(
args.model))
cluster_envs = {}
cluster_envs["train.trainer.trainer"] = "CtrCodingTrainer"
cluster_envs["train.trainer.platform"] = envs.get_platform()
set_runtime_envs(cluster_envs, args.model)
trainer = TrainerFactory.create(args.model)
return trainer
def local_cluster_engine(args):
def get_worker_num(run_extras, workers):
_envs = envs.load_yaml(args.model)
mode = envs.get_runtime_environ("mode")
workspace = envs.get_runtime_environ("workspace")
phases_class = ".".join(["runner", mode, "phases"])
phase_names = run_extras.get(phases_class)
phases = []
all_phases = _envs.get("phase")
if phase_names is None:
phases = all_phases
else:
for phase in all_phases:
if phase["name"] in phase_names:
phases.append(phase)
dataset_names = []
for phase in phases:
dataset_names.append(phase["dataset_name"])
datapaths = []
for dataset in _envs.get("dataset"):
if dataset["name"] in dataset_names:
datapaths.append(dataset["data_path"])
if not datapaths:
raise ValueError("data path must exist for training/inference")
datapaths = [
envs.workspace_adapter_by_specific(path, workspace)
for path in datapaths
]
all_workers = [len(os.listdir(path)) for path in datapaths]
all_workers.append(workers)
max_worker_num = min(all_workers)
if max_worker_num >= workers:
return workers
print(
"phases do not have enough datas for training, set worker/gpu cards num from {} to {}".
format(workers, max_worker_num))
return max_worker_num
from paddlerec.core.engine.local_cluster import LocalClusterEngine
run_extras = get_all_inters_from_yaml(args.model, ["runner."])
mode = envs.get_runtime_environ("mode")
trainer_class = ".".join(["runner", mode, "trainer_class"])
fleet_class = ".".join(["runner", mode, "fleet_mode"])
device_class = ".".join(["runner", mode, "device"])
selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])
strategy_class = ".".join(["runner", mode, "distribute_strategy"])
worker_class = ".".join(["runner", mode, "worker_num"])
server_class = ".".join(["runner", mode, "server_num"])
trainer = run_extras.get(trainer_class, "GeneralTrainer")
fleet_mode = run_extras.get(fleet_class, "ps")
device = run_extras.get(device_class, "cpu")
selected_gpus = run_extras.get(selected_gpus_class, "0")
distributed_strategy = run_extras.get(strategy_class, "async")
executor_mode = "train"
worker_num = run_extras.get(worker_class, 1)
server_num = run_extras.get(server_class, 1)
device = device.upper()
fleet_mode = fleet_mode.upper()
cluster_envs = {}
# Todo: delete follow hard code when paddle support ps-gpu.
if device == "CPU":
fleet_mode = "PS"
elif device == "GPU":
fleet_mode = "COLLECTIVE"
if fleet_mode == "PS" and device != "CPU":
raise ValueError("PS can not be used with GPU")
if fleet_mode == "COLLECTIVE" and device != "GPU":
raise ValueError("COLLECTIVE can not be used without GPU")
if fleet_mode == "PS":
worker_num = get_worker_num(run_extras, worker_num)
if fleet_mode == "COLLECTIVE":
cluster_envs["selected_gpus"] = selected_gpus
gpus = selected_gpus.split(",")
worker_num = get_worker_num(run_extras, len(gpus))
cluster_envs["selected_gpus"] = ','.join(gpus[:worker_num])
cluster_envs["server_num"] = server_num
cluster_envs["worker_num"] = worker_num
cluster_envs["start_port"] = envs.find_free_port()
cluster_envs["fleet_mode"] = fleet_mode
cluster_envs["log_dir"] = "logs"
cluster_envs["train.trainer.trainer"] = trainer
cluster_envs["train.trainer.executor_mode"] = executor_mode
cluster_envs["train.trainer.strategy"] = distributed_strategy
cluster_envs["train.trainer.threads"] = "2"
cluster_envs["CPU_NUM"] = cluster_envs["train.trainer.threads"]
cluster_envs["train.trainer.engine"] = "local_cluster"
cluster_envs["train.trainer.platform"] = envs.get_platform()
print("launch {} engine with cluster to run model: {}".format(trainer,
args.model))
set_runtime_envs(cluster_envs, args.model)
launch = LocalClusterEngine(cluster_envs, args.model)
return launch
def local_mpi_engine(args):
print("launch cluster engine with cluster to run model: {}".format(
args.model))
from paddlerec.core.engine.local_mpi import LocalMPIEngine
print("use 1X1 MPI ClusterTraining at localhost to run model: {}".format(
args.model))
mpi = util.run_which("mpirun")
if not mpi:
raise RuntimeError("can not find mpirun, please check environment")
run_extras = get_all_inters_from_yaml(args.model, ["runner."])
mode = envs.get_runtime_environ("mode")
trainer_class = ".".join(["runner", mode, "trainer_class"])
fleet_class = ".".join(["runner", mode, "fleet_mode"])
distributed_strategy = "async"
executor_mode = "train"
trainer = run_extras.get(trainer_class, "GeneralTrainer")
fleet_mode = run_extras.get(fleet_class, "ps")
cluster_envs = {}
cluster_envs["mpirun"] = mpi
cluster_envs["train.trainer.trainer"] = trainer
cluster_envs["log_dir"] = "logs"
cluster_envs["train.trainer.engine"] = "local_cluster"
cluster_envs["train.trainer.executor_mode"] = executor_mode
cluster_envs["fleet_mode"] = fleet_mode
cluster_envs["train.trainer.strategy"] = distributed_strategy
cluster_envs["train.trainer.threads"] = "2"
cluster_envs["train.trainer.platform"] = envs.get_platform()
set_runtime_envs(cluster_envs, args.model)
launch = LocalMPIEngine(cluster_envs, args.model)
return launch
def get_abs_model(model):
if model.startswith("paddlerec."):
dir = envs.paddlerec_adapter(model)
path = os.path.join(dir, "config.yaml")
else:
if not os.path.isfile(model):
raise IOError("model config: {} invalid".format(model))
path = model
return path
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='paddle-rec run')
parser.add_argument("-m", "--model", type=str)
parser.add_argument("-b", "--backend", type=str, default=None)
abs_dir = os.path.dirname(os.path.abspath(__file__))
envs.set_runtime_environs({"PACKAGE_BASE": abs_dir})
args = parser.parse_args()
args.model = get_abs_model(args.model)
if not validation.yaml_validation(args.model):
sys.exit(-1)
engine_registry()
running_config = get_all_inters_from_yaml(
args.model, ["workspace", "mode", "runner."])
modes = get_modes(running_config)
for mode in modes:
envs.set_runtime_environs({
"mode": mode,
"workspace": running_config["workspace"]
})
which_engine = get_engine(args, running_config, mode)
engine = which_engine(args)
engine.run()