forked from BOINC/boinc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcpu_sched.cpp
1637 lines (1493 loc) · 51.8 KB
/
cpu_sched.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// CPU scheduling logic.
//
// - create an ordered "run list" (make_run_list()).
// The ordering is roughly as follows:
// - GPU jobs first, then CPU jobs
// - for a given resource, jobs in deadline danger first
// - jobs from projects with lower recent est. credit first
// In principle, the run list could include all runnable jobs.
// For efficiency, we stop adding:
// - GPU jobs: when all GPU instances used
// - CPU jobs: when the # of CPUs allocated to single-thread jobs,
// OR the # allocated to multi-thread jobs, exceeds # CPUs
// (ensure we have enough single-thread jobs
// in case we can't run the multi-thread jobs)
// NOTE: RAM usage is not taken into consideration
// in the process of building this list.
// It's possible that include a bunch of jobs that can't run
// because of memory limits,
// even though there are other jobs that could run.
// - add running jobs to the list
// (in case they haven't finished time slice or checkpointed)
// - sort the list according to "more_important()"
// - shuffle the list to avoid starving multi-thread jobs
//
// - scan through the resulting list, running the jobs and preempting
// other jobs (enforce_run_list).
// Don't run a job if
// - its GPUs can't be assigned (possible if need >1 GPU)
// - it's a multi-thread job, and CPU usage would be #CPUs+1 or more
// - it's a single-thread job, don't oversaturate CPU
// (details depend on whether a MT job is running)
// - its memory usage would exceed RAM limits
// If there's a running job using a given app version,
// unstarted jobs using that app version
// are assumed to have the same working set size.
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#include "sysmon_win.h"
#else
#include "config.h"
#include <string>
#include <cstring>
#include <list>
#endif
#include "coproc.h"
#include "error_numbers.h"
#include "filesys.h"
#include "str_util.h"
#include "util.h"
#include "app.h"
#include "app_config.h"
#include "client_msgs.h"
#include "client_state.h"
#include "coproc_sched.h"
#include "log_flags.h"
#include "project.h"
#include "result.h"
using std::vector;
using std::list;
static double rec_sum;
// used in make_run_list() to keep track of resources used
// by jobs tentatively scheduled so far
//
struct PROC_RESOURCES {
int ncpus;
double ncpus_used_st; // #CPUs of GPU or single-thread jobs
double ncpus_used_mt; // #CPUs of multi-thread jobs
COPROCS pr_coprocs;
void init() {
ncpus = gstate.ncpus;
ncpus_used_st = 0;
ncpus_used_mt = 0;
pr_coprocs.clone(coprocs, false);
pr_coprocs.clear_usage();
if (have_max_concurrent) {
max_concurrent_init();
}
}
// should we stop scanning jobs?
//
inline bool stop_scan_cpu() {
if (ncpus_used_st >= ncpus) return true;
if (ncpus_used_mt >= 2*ncpus) return true;
// kind of arbitrary, but need to have some limit
// in case there are only MT jobs, and lots of them
return false;
}
inline bool stop_scan_coproc(int rsc_type) {
COPROC& cp = pr_coprocs.coprocs[rsc_type];
for (int i=0; i<cp.count; i++) {
if (cp.usage[i] < 1) return false;
}
return true;
}
// should we consider scheduling this job?
// (i.e add it to the runnable list; not actually run it)
//
bool can_schedule(RESULT* rp, ACTIVE_TASK* atp) {
if (max_concurrent_exceeded(rp)) return false;
if (atp) {
// don't schedule if something's pending
//
switch (atp->task_state()) {
case PROCESS_ABORT_PENDING:
case PROCESS_QUIT_PENDING:
return false;
}
if (gstate.retry_shmem_time > gstate.now) {
if (atp->app_client_shm.shm == NULL) {
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched_debug] waiting for shared mem: %s",
rp->name
);
}
atp->needs_shmem = true;
return false;
}
atp->needs_shmem = false;
}
}
if (rp->schedule_backoff > gstate.now) return false;
if (rp->uses_gpu()) {
if (gpu_suspend_reason) return false;
}
if (rp->uses_coprocs()) {
if (sufficient_coprocs(*rp)) {
return true;
} else {
return false;
}
} else if (rp->avp->avg_ncpus > 1) {
if (ncpus_used_mt == 0) return true;
return (ncpus_used_mt + rp->avp->avg_ncpus <= ncpus);
} else {
return (ncpus_used_st < ncpus);
}
}
// we've decided to add this to the runnable list; update bookkeeping
//
void schedule(RESULT* rp, bool is_edf) {
int rt = rp->avp->gpu_usage.rsc_type;
if (rt) {
// if the resource type has exclusions, don't reserve instances.
// It means that the run list will include all jobs
// for that resource type.
// Inefficient, but necessary to avoid starvation cases.
//
if (! rsc_work_fetch[rt].has_exclusions) {
reserve_coprocs(*rp);
}
//ncpus_used_st += rp->avp->avg_ncpus;
// don't increment CPU usage.
// This may seem odd; the reason is the following scenario:
// - this job uses lots of CPU (say, a whole one)
// - there's an uncheckpointed GPU job that uses little CPU
// - we end up running the uncheckpointed job
// - this causes all or part of a CPU to be idle
} else if (rp->avp->avg_ncpus > 1) {
ncpus_used_mt += rp->avp->avg_ncpus;
} else {
ncpus_used_st += rp->avp->avg_ncpus;
}
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched_debug] add to run list: %s (%s, %s) (prio %f)",
rp->name,
rsc_name_long(rt),
is_edf?"EDF":"FIFO",
rp->project->sched_priority
);
}
adjust_rec_sched(rp);
max_concurrent_inc(rp);
}
bool sufficient_coprocs(RESULT& r) {
APP_VERSION& av = *r.avp;
int rt = av.gpu_usage.rsc_type;
if (!rt) return true;
double x = av.gpu_usage.usage;
COPROC& cp = pr_coprocs.coprocs[rt];
for (int i=0; i<cp.count; i++) {
if (gpu_excluded(r.app, cp, i)) continue;
double unused = 1 - cp.usage[i];
x -= unused;
if (x <= 0) return true;
}
if (log_flags.cpu_sched_debug) {
msg_printf(r.project, MSG_INFO,
"[cpu_sched_debug] insufficient %s for %s",
cp.type, r.name
);
}
return false;
}
void reserve_coprocs(RESULT& r) {
double x;
APP_VERSION& av = *r.avp;
int rt = av.gpu_usage.rsc_type;
COPROC& cp = pr_coprocs.coprocs[rt];
x = av.gpu_usage.usage;
for (int i=0; i<cp.count; i++) {
if (gpu_excluded(r.app, cp, i)) continue;
double unused = 1 - cp.usage[i];
if (unused >= x) {
cp.usage[i] += x;
break;
} else {
cp.usage[i] = 1;
x -= unused;
}
}
if (log_flags.cpu_sched_debug) {
msg_printf(r.project, MSG_INFO,
"[cpu_sched_debug] reserving %f of coproc %s",
av.gpu_usage.usage, cp.type
);
}
}
};
bool gpus_usable = true;
#ifndef SIM
// see whether there's been a change in coproc usability;
// if so set or clear "coproc_missing" flags and return true.
//
bool check_coprocs_usable() {
#ifdef _WIN32
unsigned int i;
bool new_usable = !is_remote_desktop();
if (gpus_usable) {
if (!new_usable) {
gpus_usable = false;
for (i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->avp->gpu_usage.rsc_type) {
rp->coproc_missing = true;
}
}
msg_printf(NULL, MSG_INFO,
"Remote desktop in use; disabling GPU tasks"
);
return true;
}
} else {
if (new_usable) {
gpus_usable = true;
for (i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->avp->gpu_usage.rsc_type) {
rp->coproc_missing = false;
}
}
msg_printf(NULL, MSG_INFO,
"Remote desktop not in use; enabling GPU tasks"
);
return true;
}
}
#endif
return false;
}
#endif
// return true if the task has finished its time slice
// and has checkpointed since the end of the time slice
// (called only for scheduled tasks)
//
static inline bool finished_time_slice(ACTIVE_TASK* atp) {
double time_slice_end = atp->run_interval_start_wall_time + gstate.global_prefs.cpu_scheduling_period();
bool running_beyond_sched_period = gstate.now > time_slice_end;
bool checkpointed = atp->checkpoint_wall_time > time_slice_end;
if (running_beyond_sched_period && !checkpointed) {
atp->overdue_checkpoint = true;
}
return (running_beyond_sched_period && checkpointed);
}
// Choose a "best" runnable CPU job for each project
//
// Values are returned in project->next_runnable_result
// (skip projects for which this is already non-NULL)
//
// Don't choose results with already_selected == true;
// mark chosen results as already_selected.
//
// The preference order:
// 1. results with active tasks that are running
// 2. results with active tasks that are preempted (but have a process)
// 3. results with active tasks that have no process
// 4. results with no active task
//
// TODO: this is called in a loop over NCPUs, which is silly.
// Should call it once, and have it make an ordered list per project.
//
void CLIENT_STATE::assign_results_to_projects() {
unsigned int i;
RESULT* rp;
PROJECT* project;
// scan results with an ACTIVE_TASK
//
for (i=0; i<active_tasks.active_tasks.size(); i++) {
ACTIVE_TASK *atp = active_tasks.active_tasks[i];
if (!atp->runnable()) continue;
rp = atp->result;
if (rp->already_selected) continue;
if (rp->uses_coprocs()) continue;
if (!rp->runnable()) continue;
project = rp->project;
if (!project->next_runnable_result) {
project->next_runnable_result = rp;
continue;
}
// see if this task is "better" than the one currently
// selected for this project
//
ACTIVE_TASK *next_atp = lookup_active_task_by_result(
project->next_runnable_result
);
if ((next_atp->task_state() == PROCESS_UNINITIALIZED && atp->process_exists())
|| (next_atp->scheduler_state == CPU_SCHED_PREEMPTED
&& atp->scheduler_state == CPU_SCHED_SCHEDULED)
) {
project->next_runnable_result = atp->result;
}
}
// Now consider results that don't have an active task
//
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->already_selected) continue;
if (rp->uses_coprocs()) continue;
if (lookup_active_task_by_result(rp)) continue;
if (!rp->runnable()) continue;
project = rp->project;
if (project->next_runnable_result) continue;
project->next_runnable_result = rp;
}
// mark selected results, so CPU scheduler won't try to consider
// a result more than once
//
for (i=0; i<projects.size(); i++) {
project = projects[i];
if (project->next_runnable_result) {
project->next_runnable_result->already_selected = true;
}
}
}
// Among projects with a "next runnable result",
// find the project P with the largest priority,
// and return its next runnable result
//
RESULT* CLIENT_STATE::highest_prio_project_best_result() {
PROJECT *best_project = NULL;
double best_prio = 0;
bool first = true;
unsigned int i;
for (i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (!p->next_runnable_result) continue;
if (p->non_cpu_intensive) continue;
if (first || p->sched_priority > best_prio) {
first = false;
best_project = p;
best_prio = p->sched_priority;
}
}
if (!best_project) return NULL;
RESULT* rp = best_project->next_runnable_result;
best_project->next_runnable_result = 0;
return rp;
}
// Return a job of the given type according to the following criteria
// (desc priority):
// - from project with higher priority
// - already-started job
// - earlier received_time
// - lexicographically earlier name
//
// Give priority to already-started jobs because of the following scenario:
// - client gets several jobs in a sched reply and starts downloading files
// - a later job finishes downloading and starts
// - an earlier finishes downloading and preempts
//
RESULT* first_coproc_result(int rsc_type) {
unsigned int i;
RESULT* best = NULL;
double best_prio=0, prio;
for (i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->resource_type() != rsc_type) continue;
if (!rp->runnable()) {
//msg_printf(rp->project, MSG_INFO, "not runnable: %s", rp->name);
continue;
}
if (rp->non_cpu_intensive()) continue;
if (rp->already_selected) continue;
prio = rp->project->sched_priority;
if (!best) {
best = rp;
best_prio = prio;
continue;
}
if (prio < best_prio) {
continue;
}
if (prio > best_prio) {
best = rp;
best_prio = prio;
continue;
}
bool bs = !best->not_started;
bool rs = !rp->not_started;
if (rs && !bs) {
best = rp;
best_prio = prio;
continue;
}
if (!rs && bs) {
continue;
}
// else used "arrived first" order
//
if (rp->index < best->index) {
best = rp;
best_prio = prio;
}
}
return best;
}
// Return earliest-deadline result for given resource type;
// return only results projected to miss their deadline,
// or from projects with extreme DCF
//
static RESULT* earliest_deadline_result(int rsc_type) {
RESULT *best_result = NULL;
ACTIVE_TASK* best_atp = NULL;
unsigned int i;
for (i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->resource_type() != rsc_type) continue;
if (rp->already_selected) continue;
if (!rp->runnable()) continue;
if (rp->non_cpu_intensive()) continue;
PROJECT* p = rp->project;
// Skip this job if the project's deadline-miss count is zero.
// If the project's DCF is > 90 (and we're not ignoring it)
// treat all jobs as deadline misses
//
if (p->dont_use_dcf || p->duration_correction_factor < 90.0) {
if (p->rsc_pwf[rsc_type].deadlines_missed_copy <= 0) {
continue;
}
}
bool new_best = false;
if (best_result) {
if (rp->report_deadline < best_result->report_deadline) {
new_best = true;
}
} else {
new_best = true;
}
if (new_best) {
best_result = rp;
best_atp = gstate.lookup_active_task_by_result(rp);
continue;
}
if (rp->report_deadline > best_result->report_deadline) {
continue;
}
// If there's a tie, pick the job with the least remaining time
// (but don't pick an unstarted job over one that's started)
//
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(rp);
if (best_atp && !atp) continue;
if (rp->estimated_runtime_remaining() < best_result->estimated_runtime_remaining()
|| (!best_atp && atp)
) {
best_result = rp;
best_atp = atp;
}
}
if (!best_result) return NULL;
return best_result;
}
void CLIENT_STATE::reset_rec_accounting() {
unsigned int i;
for (i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
for (int j=0; j<coprocs.n_rsc; j++) {
p->rsc_pwf[j].reset_rec_accounting();
}
}
for (int j=0; j<coprocs.n_rsc; j++) {
rsc_work_fetch[j].reset_rec_accounting();
}
rec_interval_start = now;
}
// update REC (recent estimated credit)
//
static void update_rec() {
double f = gstate.host_info.p_fpops;
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
double x = 0;
for (int j=0; j<coprocs.n_rsc; j++) {
x += p->rsc_pwf[j].secs_this_rec_interval * f * rsc_work_fetch[j].relative_speed;
}
x *= COBBLESTONE_SCALE;
double old = p->pwf.rec;
// start averages at zero
//
if (p->pwf.rec_time == 0) {
p->pwf.rec_time = gstate.rec_interval_start;
}
update_average(
gstate.now,
gstate.rec_interval_start,
x,
cc_config.rec_half_life,
p->pwf.rec,
p->pwf.rec_time
);
if (log_flags.priority_debug) {
double dt = gstate.now - gstate.rec_interval_start;
msg_printf(p, MSG_INFO,
"[prio] recent est credit: %.2fG in %.2f sec, %f + %f ->%f",
x, dt, old, p->pwf.rec-old, p->pwf.rec
);
}
}
}
static double peak_flops(APP_VERSION* avp) {
double f = gstate.host_info.p_fpops;
double x = f * avp->avg_ncpus;
int rt = avp->gpu_usage.rsc_type;
if (rt) {
x += f * avp->gpu_usage.usage * rsc_work_fetch[rt].relative_speed;
}
return x;
}
double total_peak_flops() {
static bool first=true;
static double tpf;
if (first) {
first = false;
tpf = gstate.host_info.p_fpops * gstate.ncpus;
for (int i=1; i<coprocs.n_rsc; i++) {
COPROC& cp = coprocs.coprocs[i];
tpf += rsc_work_fetch[i].relative_speed * gstate.host_info.p_fpops * cp.count;
}
}
return tpf;
}
// Initialize project "priorities" based on REC:
// compute resource share and REC fractions
// among compute-intensive, non-suspended projects
//
void project_priority_init(bool for_work_fetch) {
double rs_sum = 0;
rec_sum = 0;
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
if (p->non_cpu_intensive) continue;
if (for_work_fetch) {
if (!p->can_request_work()) continue;
} else {
if (!p->runnable(RSC_TYPE_ANY)) continue;
}
p->pwf.rec_temp = p->pwf.rec;
rs_sum += p->resource_share;
rec_sum += p->pwf.rec_temp;
}
if (rec_sum == 0) {
rec_sum = 1;
}
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
if (p->non_cpu_intensive || p->suspended_via_gui || rs_sum==0) {
p->resource_share_frac = 0;
p->sched_priority = 0;
} else {
p->resource_share_frac = p->resource_share/rs_sum;
p->compute_sched_priority();
if (log_flags.priority_debug) {
msg_printf(p, MSG_INFO, "[prio] %f rsf %f rt %f rs %f",
p->sched_priority, p->resource_share_frac,
p->pwf.rec_temp, rec_sum
);
}
}
}
}
void PROJECT::compute_sched_priority() {
double rec_frac = pwf.rec_temp/rec_sum;
// projects with zero resource share are always lower priority
// than those with positive resource share
//
if (resource_share == 0) {
sched_priority = -1e3 - rec_frac;
} else {
sched_priority = - rec_frac/resource_share_frac;
}
}
// called from the scheduler's job-selection loop;
// we plan to run this job;
// bump the project's temp REC by the estimated credit for 1 hour.
// This encourages a mixture jobs from different projects.
//
void adjust_rec_sched(RESULT* rp) {
PROJECT* p = rp->project;
p->pwf.rec_temp += peak_flops(rp->avp)/total_peak_flops() * rec_sum/24;
p->compute_sched_priority();
}
// make this a variable so simulator can change it
//
double rec_adjust_period = REC_ADJUST_PERIOD;
// adjust project REC
//
void CLIENT_STATE::adjust_rec() {
unsigned int i;
double elapsed_time = now - rec_interval_start;
// If the elapsed time is negative or more than 2*REC_ADJUST_PERIOD
// it must be because either
// - the system clock was changed.
// - the host was suspended for a long time.
// In either case, ignore the last period
//
if (elapsed_time > 2*rec_adjust_period || elapsed_time < 0) {
if (log_flags.priority_debug) {
msg_printf(NULL, MSG_INFO,
"[priority] adjust_rec: elapsed time (%.0f) negative or longer than sched enforce period(%.0f). Ignoring this period.",
elapsed_time, rec_adjust_period
);
}
reset_rec_accounting();
return;
}
// skip small intervals
//
if (elapsed_time < 1) {
return;
}
// total up how many instance-seconds projects got
//
for (i=0; i<active_tasks.active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks.active_tasks[i];
if (atp->scheduler_state != CPU_SCHED_SCHEDULED) continue;
PROJECT* p = atp->result->project;
if (p->non_cpu_intensive) continue;
work_fetch.accumulate_inst_sec(atp, elapsed_time);
}
update_rec();
reset_rec_accounting();
}
// Possibly do job scheduling.
// This is called periodically.
//
bool CLIENT_STATE::schedule_cpus() {
double elapsed_time;
static double last_reschedule=0;
vector<RESULT*> run_list;
if (projects.size() == 0) return false;
if (results.size() == 0) return false;
// Reschedule every CPU_SCHED_PERIOD seconds,
// or if must_schedule_cpus is set
// (meaning a new result is available, or a CPU has been freed).
//
elapsed_time = now - last_reschedule;
if (gstate.clock_change || elapsed_time >= CPU_SCHED_PERIOD) {
request_schedule_cpus("periodic CPU scheduling");
}
if (!must_schedule_cpus) return false;
last_reschedule = now;
must_schedule_cpus = false;
// NOTE: there's an assumption that REC is adjusted at
// least as often as the CPU sched period (see client_state.h).
// If you remove the following, make changes accordingly
//
adjust_rec();
make_run_list(run_list);
return enforce_run_list(run_list);
}
// Mark a job J as a deadline miss if either
// - it once ran in EDF, and its project has another job
// of the same resource type marked as deadline miss.
// This avoids domino-effect preemption
// - it was recently marked as a deadline miss by RR sim.
// This avoids "thrashing" if a job oscillates between miss and not miss.
//
static void promote_once_ran_edf() {
for (unsigned int i=0; i<gstate.active_tasks.active_tasks.size(); i++) {
ACTIVE_TASK* atp = gstate.active_tasks.active_tasks[i];
if (atp->result->rr_sim_misses_deadline) continue;
if (atp->once_ran_edf) {
RESULT* rp = atp->result;
PROJECT* p = rp->project;
if (p->deadlines_missed(rp->avp->rsc_type())) {
if (log_flags.cpu_sched_debug) {
msg_printf(p, MSG_INFO,
"[cpu_sched_debug] domino prevention: mark %s as deadline miss",
rp->name
);
}
rp->rr_sim_misses_deadline = true;
continue;
}
}
if (gstate.now - atp->last_deadline_miss_time < gstate.global_prefs.cpu_scheduling_period()) {
if (log_flags.cpu_sched_debug) {
RESULT* rp = atp->result;
PROJECT* p = rp->project;
msg_printf(p, MSG_INFO,
"[cpu_sched_debug] thrashing prevention: mark %s as deadline miss",
rp->name
);
}
atp->result->rr_sim_misses_deadline = true;
}
}
}
void add_coproc_jobs(
vector<RESULT*>& run_list, int rsc_type, PROC_RESOURCES& proc_rsc
) {
ACTIVE_TASK* atp;
RESULT* rp;
#ifdef SIM
if (!cpu_sched_rr_only) {
#endif
// choose coproc jobs from projects with coproc deadline misses
//
while (!proc_rsc.stop_scan_coproc(rsc_type)) {
rp = earliest_deadline_result(rsc_type);
if (!rp) break;
rp->already_selected = true;
atp = gstate.lookup_active_task_by_result(rp);
if (!proc_rsc.can_schedule(rp, atp)) continue;
proc_rsc.schedule(rp, true);
rp->project->rsc_pwf[rsc_type].deadlines_missed_copy--;
rp->edf_scheduled = true;
run_list.push_back(rp);
}
#ifdef SIM
}
#endif
// then coproc jobs in FIFO order
//
while (!proc_rsc.stop_scan_coproc(rsc_type)) {
rp = first_coproc_result(rsc_type);
if (!rp) break;
rp->already_selected = true;
atp = gstate.lookup_active_task_by_result(rp);
if (!proc_rsc.can_schedule(rp, atp)) continue;
proc_rsc.schedule(rp, false);
run_list.push_back(rp);
}
}
// Make an ordered list of jobs to run.
//
void CLIENT_STATE::make_run_list(vector<RESULT*>& run_list) {
RESULT* rp;
PROJECT* p;
unsigned int i;
PROC_RESOURCES proc_rsc;
ACTIVE_TASK* atp;
if (log_flags.cpu_sched_debug) {
msg_printf(0, MSG_INFO, "[cpu_sched_debug] schedule_cpus(): start");
}
proc_rsc.init();
// do round-robin simulation to find what results miss deadline
//
rr_simulation();
if (log_flags.rr_simulation) {
print_deadline_misses();
}
// avoid preemption of jobs that once ran EDF
//
promote_once_ran_edf();
// set temporary variables
//
project_priority_init(false);
for (i=0; i<results.size(); i++) {
rp = results[i];
rp->already_selected = false;
rp->edf_scheduled = false;
rp->not_started = !rp->computing_done();
}
for (i=0; i<projects.size(); i++) {
p = projects[i];
p->next_runnable_result = NULL;
for (int j=0; j<coprocs.n_rsc; j++) {
p->rsc_pwf[j].deadlines_missed_copy = p->rsc_pwf[j].deadlines_missed;
}
}
for (i=0; i<app_versions.size(); i++) {
app_versions[i]->max_working_set_size = 0;
}
for (i=0; i<active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
atp->too_large = false;
double w = atp->procinfo.working_set_size_smoothed;
APP_VERSION* avp = atp->app_version;
if (w > avp->max_working_set_size) {
avp->max_working_set_size = w;
}
atp->result->not_started = false;
}
// first, add GPU jobs
for (int j=1; j<coprocs.n_rsc; j++) {
add_coproc_jobs(run_list, j, proc_rsc);
}
// then add CPU jobs.
// Note: the jobs that actually get run are not necessarily
// an initial segment of this list;
// e.g. a multithread job may not get run because it has
// a high-priority single-thread job ahead of it.
// choose CPU jobs from projects with CPU deadline misses
//
#ifdef SIM
if (!cpu_sched_rr_only) {
#endif
while (!proc_rsc.stop_scan_cpu()) {
rp = earliest_deadline_result(RSC_TYPE_CPU);
if (!rp) break;
rp->already_selected = true;
atp = lookup_active_task_by_result(rp);
if (!proc_rsc.can_schedule(rp, atp)) continue;
proc_rsc.schedule(rp, true);
rp->project->rsc_pwf[0].deadlines_missed_copy--;
rp->edf_scheduled = true;
run_list.push_back(rp);
}
#ifdef SIM
}
#endif
// Next, choose CPU jobs from highest priority projects
//
while (!proc_rsc.stop_scan_cpu()) {
assign_results_to_projects();
rp = highest_prio_project_best_result();
if (!rp) break;
atp = lookup_active_task_by_result(rp);
if (!proc_rsc.can_schedule(rp, atp)) continue;
proc_rsc.schedule(rp, false);
run_list.push_back(rp);
}
}
static inline bool in_run_list(vector<RESULT*>& run_list, ACTIVE_TASK* atp) {
for (unsigned int i=0; i<run_list.size(); i++) {
if (atp->result == run_list[i]) return true;
}
return false;
}
#if 0
// scan the runnable list, keeping track of CPU usage X.
// if find a MT job J, and X < ncpus, move J before all non-MT jobs
// But don't promote a MT job ahead of a job in EDF
//
// This is needed because there may always be a 1-CPU job
// in the middle of its time-slice, and MT jobs could starve.
//
static void promote_multi_thread_jobs(vector<RESULT*>& runnable_jobs) {
double cpus_used = 0;
vector<RESULT*>::iterator first_non_mt = runnable_jobs.end();
vector<RESULT*>::iterator cur = runnable_jobs.begin();
while(1) {
if (cur == runnable_jobs.end()) break;
if (cpus_used >= gstate.ncpus) break;
RESULT* rp = *cur;
if (rp->rr_sim_misses_deadline) break;
double nc = rp->avp->avg_ncpus;
if (nc > 1) {
if (first_non_mt != runnable_jobs.end()) {
cur = runnable_jobs.erase(cur);
runnable_jobs.insert(first_non_mt, rp);
cpus_used = 0;
first_non_mt = runnable_jobs.end();
cur = runnable_jobs.begin();
continue;
}
} else {
if (first_non_mt == runnable_jobs.end()) {
first_non_mt = cur;
}
}
cpus_used += nc;
cur++;
}
}
#endif
// return true if r0 is more important to run than r1
//
static inline bool more_important(RESULT* r0, RESULT* r1) {
// favor jobs in danger of deadline miss
//
bool miss0 = r0->edf_scheduled;
bool miss1 = r1->edf_scheduled;
if (miss0 && !miss1) return true;