forked from physical-computation/gfet-simulator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGUI.py
executable file
·682 lines (552 loc) · 25.9 KB
/
GUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
# Class to setup and manage GUI components for GFET Lab.
import GFET_IO as gio
import models as gfet
import sys
import tkinter as tk
from tkinter import ttk, filedialog
import re
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import (
FigureCanvasTkAgg, NavigationToolbar2Tk)
from matplotlib.backend_bases import key_press_handler
from matplotlib.figure import Figure
from matplotlib.widgets import Cursor
import numpy as np
from scipy import constants as consts
# Default Device Parameters
tox1 = 90#50 # TG oxide layer thickness, nm
tox2 = 1#50 # BG oxide layer thickness, nm
W = 10#40 # Channel Width, um
L = 30#120 # Channel Length, um
mup = 6500#8800 # p-type carrier mobility
mun = 4800#7700 # n-type carrier mobility
vF = 1.3*10**6 # Fermi Velocity, m/s
Nf = 5e15 # Dopant density
T = 298 # Operating temperature, default is room temp (in Kelvin)
# Default dielectric (0=SiO2, 1=SiC, 2=Al2O3, 3=AlN, 4=HfO2, 5=ZrO2, 6=hBn, 7=Air, 8=None)
topDielecDef = 0
bottomDielecDef = 8
# Default Sweep Settings
transSweepFields = 'Vtg Start', 'Vtg End', 'Vtg Step', 'Vbg', 'Vds Start', 'Vds End', 'Vds Step'
#transSweepParams = -10, 10, 0.2, 5, 0.2, 1, 0.2
transSweepParams = -36, 45, 1, -0.4, 0.01, 0.01, 0.2
ivSweepFields = 'Vtg Start', 'Vtg End', 'Vtg Step', 'Vbg', 'Vds Start', 'Vds End', 'Vds Step'
ivSweepParams = 0.2, 1, 0.2, 0, 0, 10, 0.1
fields2 = ('Top Dielectric\nThickness (nm)', 'Bottom Dielectric\nThickness (nm)', 'Channel Width (μm)', 'Channel Length (μm)', 'N-type Mobility (cm\u00b2 V⁻¹s⁻¹)',
'P-type Mobility (cm\u00b2 V⁻¹s⁻¹)', 'Fermi Velocity (ms⁻¹)', 'Effective Dopant\nDensity (m⁻\u00b2)', 'Operating Temperature (K)')
params2 = tox1, tox2, W, L, mun, mup, vF, Nf, T
defaultResolution = [1024, 600]
topHeight = 100
scatterSize = 10
# Available Models
GFET_models = "Jimenez", "Mukherjee (NOT WORKING)"
class GUI:
def __init__(self, master):
self.root = master
self.root.geometry(str(defaultResolution[0]) + 'x' + str(defaultResolution[1]))
self.root.title('GFET Lab')
self.root.resizable(0,0)
self.io = gio.GFET_IO()
self.model = GFET_models[0] # Default to first model
self.data = {}
top = tk.Frame(self.root, width=defaultResolution[0], height=topHeight)
left = tk.Frame(self.root, width=int(2*defaultResolution[0]/5),
height=(defaultResolution[1]-topHeight))
right = tk.Frame(self.root, width=int(3*defaultResolution[0]/5),
height=(defaultResolution[1]-topHeight))
top.pack(fill="both")
left.pack(side="left")
right.pack(side="right")
for frame in [left, right]:
frame.pack_propagate(0)
# Left Panel Tabs (settings etc)
tab_control = ttk.Notebook(left, style='Custom.TNotebook')
tab_control.pack()
self.ltab1 = ttk.Frame(tab_control)
tab_control.add(self.ltab1,text= 'Sweep Parameters')
self.ltab2 = ttk.Frame(tab_control)
tab_control.add(self.ltab2, text= 'Device Parameters')
self.setupParamsTab()
self.setupSweepTab()
# Right Panel Tabs (plots etc)
tab_control2 = ttk.Notebook(right, style='Custom.TNotebook')
tab_control2.pack()
self.rtab1 = ttk.Frame(tab_control2)
tab_control2.add(self.rtab1,text= 'Transfer Characteristic')
self.rtab2 = ttk.Frame(tab_control2)
tab_control2.add(self.rtab2, text= 'I-V Characteristic')
self.rtab3 = ttk.Frame(tab_control2)
tab_control2.add(self.rtab3, text= 'Transconductance')
self.rtab4 = ttk.Frame(tab_control2)
tab_control2.add(self.rtab4, text= 'Transit Frequency')
self.setupAxes()
# Top Panel stuff (i.e. buttons)
self.setupTopFrame(top)
def fetch(self, entries):
data = []
for entry in entries:
text = entry[1].get()
data.append(text)
return data
# See if the entry can be converted to a float or not. If not, it's not valid input
def validate_entry(self, content, newcont):
# Allow null entry
if content == "":
return True
elif content == "-":
return True
elif content == ".":
return True
try:
float(content)
return True
except ValueError:
return False
def makeform(self, root, fields, params):
entries = []
validate = (root.register(self.validate_entry), "%P", '%s')
for index,field in enumerate(fields):
row = tk.Frame(root)
lab = tk.Label(row, width=20, text=field, anchor='w')
ent = tk.Entry(row, bd=1, width=25, validate="key", validatecommand=validate)
ent.insert(0, str(params[index]))
row.pack(side=tk.TOP, fill=tk.X, padx=5, pady=5)
lab.pack(side=tk.LEFT)
ent.pack(side=tk.RIGHT, expand=tk.YES, fill=tk.X)
entries.append((field, ent))
return entries
#**************************************************************************************************#
# Model & Sweep Functions #
#**************************************************************************************************#
def generateTransferSweep(self, ent, vtgModel, vdsModel):
ent1 = self.fetch(ent)
try:
Vtg_start = float(ent1[0])
except ValueError:
Vtg_start = 0
try:
Vtg_end = float(ent1[1])
except ValueError:
Vtg_end = 0
try:
Vtg_step = float(ent1[2])
except ValueError:
Vtg_step = 0
# Possible idea to simulate hysteresis, can have as a checkbox option
# perhaps in the model definition:
# generate a random voltage between, e.g. +1V and -1V and add that
# to the Vth or Veff voltage in the model, to simulate the apparently
# random variation in dirac point position for dual-linear sweeps.
# Alternatively, implement: https://aip.scitation.org/doi/10.1063/1.4913209
try:
Vbg = float(ent1[3])
except ValueError:
Vbg = 0
try:
Vds_start = float(ent1[4])
except ValueError:
Vds_start = 0
try:
Vds_end = float(ent1[5])
except ValueError:
Vds_end = 0
try:
Vds_step = float(ent1[6])
except ValueError:
Vds_step = 0
VtgStepCorrection = -1*Vtg_step
VdsStepCorrection = 1
retDict = self.genSweepModels(vtgModel, vdsModel, Vtg_start, Vtg_end, Vtg_step,
Vbg, VtgStepCorrection, Vds_start, Vds_end, Vds_step,
VdsStepCorrection)
return retDict
def generateIVSweep(self, ent, vtgModel, vdsModel):
ent1 = self.fetch(ent)
try:
Vtg_start = float(ent1[0])
except ValueError:
Vtg_start = 0
try:
Vtg_end = float(ent1[1])
except ValueError:
Vtg_end = 0
try:
Vtg_step = float(ent1[2])
except ValueError:
Vtg_step = 0
try:
Vbg = float(ent1[3])
except ValueError:
Vbg = 0
try:
Vds_start = float(ent1[4])
except ValueError:
Vds_start = 0
try:
Vds_end = float(ent1[5])
except ValueError:
Vds_end = 0
try:
Vds_step = float(ent1[6])
except ValueError:
Vds_step = 0
VtgStepCorrection = 1
VdsStepCorrection = 0
retDict = self.genSweepModels(vtgModel, vdsModel, Vtg_start, Vtg_end, Vtg_step,
Vbg, VtgStepCorrection, Vds_start,
Vds_end, Vds_step, VdsStepCorrection)
return retDict
# Used by generateTransferSweep and by generateIVSweep
def genSweepModels(self, vtgModel, vdsModel, Vtg_start, Vtg_end, Vtg_step,
Vbg, VtgStepCorrection, Vds_start, Vds_end, Vds_step,
VdsStepCorrection):
# Vtg Model
if vtgModel == "Linear":
#if just one datapoint
if Vtg_start == Vtg_end:
dps = 1
Vtg = [Vtg_start]
else:
dps = int(VtgStepCorrection + (Vtg_end-Vtg_start)/Vtg_step)
Vtg = list(np.linspace(Vtg_start, Vtg_end, dps))
elif vtgModel == "Dual-Linear":
dps = int(VtgStepCorrection + (Vtg_end-Vtg_start)/Vtg_step)
# i.e. forwards and backwards sweep
Vtg = (list(np.linspace(Vtg_start, Vtg_end, dps))
+ list(np.linspace(Vtg_end, Vtg_step, dps)))
elif vtgModel == "Logarithmic":
dps = int(VtgStepCorrection + (Vtg_end-Vtg_start)/Vtg_step)
# i.e. forwards and backwards sweep
Vtg = (list(np.logspace(Vtg_start, Vtg_end, dps))
+ list(np.linspace(Vtg_end, Vtg_start, dps)))
# Vds Model
if vdsModel == "Linear":
dps = VdsStepCorrection + int(abs(round((Vds_start - Vds_end)/Vds_step)))
Vds = list(np.linspace(Vds_start, Vds_end, dps))
elif vdsModel == "Dual-Linear":
dps = VdsStepCorrection + int(abs(round((Vds_start - Vds_end)/Vds_step)))
Vds = list(np.linspace(Vds_start, Vds_end, dps))
elif vdsModel == "Logarithmic":
dps = VdsStepCorrection + int(abs(round((Vds_start - Vds_end)/Vds_step)))
Vds = list(np.logspace(Vds_start, Vds_end, dps))
return {"Vtg": Vtg,
"Vbg": Vbg,
"Vds": Vds}
def loadModel(self, name, vtgModel, vdsModel, ents, ents2, ents3):
self.model = name
if self.io.extIVSweep:
ivSweep = {"Vtg": self.io.ivData["Vtg"],
"Vds": self.io.ivData["Vds"],
"Vbg": self.io.ivData["Vbg"]}
else:
ivSweep = self.generateIVSweep(ents2, vtgModel, vdsModel)
if self.io.extTransSweep:
transferSweep = {"Vtg": self.io.transData["Vtg"],
"Vds": self.io.transData["Vds"],
"Vbg": self.generateTransferSweep(ents, vtgModel, vdsModel)["Vbg"]}
else:
transferSweep = self.generateTransferSweep(ents, vtgModel, vdsModel)
self.data.update({"IVChars": ivSweep,
"TransChars": transferSweep})
params = self.fetch(ents3)
eps = [self.dielecCombo1, self.dielecCombo2]
if self.model == 'Mukherjee':
GFET = gfet.MukherjeeGFET(params, ivSweep, transferSweep, eps)
transferChars, gm, fT = GFET.calculateTransferChars()
ivChars = GFET.calculateIVChars()
self.data["IVChars"].update({"Ids": ivChars})
self.data["TransChars"].update({"Ids": transferChars})
self.data.update({"gm": gm,
"fT": fT})
elif self.model == 'Jimenez':
GFET = gfet.JimenezGFET(params, ivSweep, transferSweep, eps)
transferChars, gm, fT, Vtg = GFET.calculateTransferChars()
ivChars = GFET.calculateIVChars()
self.data["IVChars"].update({"Ids": ivChars})
self.data["TransChars"].update({"Ids": transferChars})
#self.data["TransChars"].update({"Vtg": Vtg})
self.data.update({"gm": gm,
"fT": fT})
elif self.model == 'Hu':
GFET = gfet.HuGFET(params, ivSweep, transferSweep, eps)
transferChars, gm, fT = GFET.calculateTransferChars()
ivChars = GFET.calculateIVChars()
self.data["IVChars"].update({"Ids": ivChars})
self.data["TransChars"].update({"Ids": transferChars})
self.data.update({"gm": gm,
"fT": fT})
# Plot data
if self.model != None:
self.plotTransferChars(transferSweep["Vtg"], transferChars)
self.plotIVChars(ivSweep["Vds"], ivChars)
self.plotConductance(transferSweep["Vtg"], gm)
self.plotFrequency(transferSweep["Vtg"], fT)
def loadSweep(self, sweepType):
self.io.loadSweep(sweepType)
if sweepType == "Gate":
for entry in self.ents:
if entry[0] != "Vbg":
entry[1].config(state="disabled")
elif sweepType == "Drain":
for entry in self.ents2:
entry[1].config(state="disabled")
#**************************************************************************************************#
# Plotting Functions #
#**************************************************************************************************#
# Plot the transfer characteristics
def plotTransferChars(self, Vtg, Ids):
plotted = False
self.ax.clear()
self.ax.set_title('Drain Current vs Vtg')
self.ax.set_ylabel(r'$I_{DS}$ (A)')
self.ax.set_xlabel(r'$V_{TG}$ (V)')
self.ax.set_ylim(bottom=0, top=0.01)
if Vtg:
self.ax.autoscale(enable=True)
maxId = 0
minId = 0
for index,entry in enumerate(Ids):
self.ax.scatter(Vtg, Ids[index], s=scatterSize)
localmax = max(entry)
localmin = min(entry)
if localmax >= maxId:
maxId = localmax
if localmin <= minId:
minId = localmin
plotted = True
else:
self.ax.fill()
self.ax.set_aspect(1./self.ax.get_data_ratio())
self.ax.ticklabel_format(axis='y',style='sci', scilimits=(0,0))
self.canvas.draw()
# Plot the IV Characteristics
def plotIVChars(self, Vds, Ids):
plotted = False
self.ax2.clear()
self.ax2.set_title('Drain Current vs Vds')
self.ax2.set_ylabel(r'$I_{DS}$ (A)')
self.ax2.set_xlabel(r'$V_{DS}$ (V)')
self.ax2.set_ylim(bottom=0, top=0.01)
if Vds:
for index, entry in enumerate(Ids):
for entry2 in Ids[index]:
if entry2 < 0:
print(entry2)
self.ax2.autoscale(enable=True)
maxId = 0
minId = 0
for index,entry in enumerate(Ids):
self.ax2.scatter(Vds, Ids[index], s=scatterSize)
localmax = max(entry)
localmin = min(entry)
if localmax >= maxId:
maxId = localmax
if localmin <= minId:
minId = localmin
plotted = True
self.ax2.set_aspect(1./self.ax2.get_data_ratio())
self.ax2.ticklabel_format(axis='y',style='sci', scilimits=(0,0))
self.canvas2.draw()
# Plot the Conductance Characteristics
def plotConductance(self, Vtg, gm):
plotted = False
self.ax3.clear()
self.ax3.set_title('Transconductance vs Vtg')
self.ax3.set_ylabel(r'$g_m$ (S)')
self.ax3.set_xlabel(r'$V_{TG}$ (V)')
if Vtg:
for entry in gm:
self.ax3.scatter(Vtg, entry, s=scatterSize)
plotted = True
self.ax3.set_aspect(1./self.ax3.get_data_ratio())
self.ax3.ticklabel_format(axis='y',style='sci', scilimits=(0,0))
self.canvas3.draw()
def plotFrequency(self, Vtg, fT):
plotted = False
self.ax4.clear()
self.ax4.set_title('Transit Frequency vs Vtg')
self.ax4.set_ylabel(r'$f_T$ (Hz)')
self.ax4.set_xlabel(r'$V_{TG}$ (V)')
if Vtg:
for entry in fT:
self.ax4.scatter(Vtg, entry, s=scatterSize)
plotted = True
self.ax4.set_aspect(1./self.ax4.get_data_ratio())
self.ax4.ticklabel_format(axis='y',style='sci', scilimits=(0,0))
self.canvas4.draw()
def setupAxes(self):
# Transfer Characteristic Plot
fig = plt.Figure(figsize=(5,5), dpi=100)
self.ax = fig.add_subplot(111)
self.canvas = FigureCanvasTkAgg(fig, master=self.rtab1)
self.canvas.get_tk_widget().pack()
# I-V Characteristic Plot
fig2 = plt.Figure(figsize=(5,5), dpi=100)
self.ax2 = fig2.add_subplot(111)
self.canvas2 = FigureCanvasTkAgg(fig2, master=self.rtab2)
self.canvas2.get_tk_widget().pack()
# Conductance Plot
fig3 = plt.Figure(figsize=(5,5), dpi=100)
self.ax3 = fig3.add_subplot(111)
self.canvas3 = FigureCanvasTkAgg(fig3, master=self.rtab3)
self.canvas3.get_tk_widget().pack()
# Transit Frequency Plot
fig4 = plt.Figure(figsize=(5,5), dpi=100)
self.ax4 = fig4.add_subplot(111)
self.canvas4 = FigureCanvasTkAgg(fig4, master=self.rtab4)
self.canvas4.get_tk_widget().pack()
# Initialise empty plot
self.plotTransferChars(None, None)
self.plotIVChars(None, None)
self.plotConductance(None, None)
self.plotFrequency(None, None)
#**************************************************************************************************#
# GUI Setup Functions #
#**************************************************************************************************#
# Tab for voltage sweep settings
def setupSweepTab(self):
def modelBox(*args):
for entry in self.ents:
entry[1].config(state="normal")
## if self.modelCombo.get() == 'Mukherjee':
## for entry in self.ents:
## if "bg" in entry[0]:
## entry[1].config(state="disabled")
## else:
## for entry in self.ents:
## entry[1].config(state="normal")
top = tk.Frame(self.ltab1, height=(self.ltab1.winfo_height()/2))
bottom = tk.Frame(self.ltab1, height=(self.ltab1.winfo_height()/2))
# Setup Model Selection Box
modelLabel = tk.Label(top, text='GFET Model')
self.modelCombo = ttk.Combobox(top, state='readonly')
self.modelCombo['values'] = GFET_models
self.modelCombo.current(0) # First value in list is default
modelLabel.grid(row=0, column=0)
self.modelCombo.grid(row=0, column=1)
top.pack()
# Vtg Sweep Settings
VtgSweepLabel = tk.Label(top, text='Vtg Sweep Model')
self.VtgSweepCombo = ttk.Combobox(top, state='readonly')
self.VtgSweepCombo['values'] = 'Linear', 'Dual-Linear', 'Logarithmic'
self.VtgSweepCombo.current(0) # First value in list is default
VtgSweepLabel.grid(row=2, column=0)
self.VtgSweepCombo.grid(row=2, column=1)
# Vds Sweep Settings
VdsSweepLabel = tk.Label(top, text='Vds Sweep Model')
self.VdsSweepCombo = ttk.Combobox(top, state='readonly')
self.VdsSweepCombo['values'] = 'Linear', 'Dual-Linear', 'Logarithmic'
self.VdsSweepCombo.current(0) # First value in list is default
VdsSweepLabel.grid(row=4, column=0)
self.VdsSweepCombo.grid(row=4, column=1)
self.root.bind("<<ComboboxSelected>>", modelBox)
# Tabs for transfer chars sweep and for IV chars sweep
tab_control = ttk.Notebook(bottom)
tab_control.pack()
stab1 = ttk.Frame(tab_control)
tab_control.add(stab1, text= 'Transfer Characteristics')
tab2 = ttk.Frame(tab_control)
tab_control.add(tab2, text= 'I-V Characteristics')
# Make transfer tab scrollable
canvas = tk.Canvas(stab1)
scrollbar = ttk.Scrollbar(stab1, orient='vertical', command=canvas.yview)
scrollable_frame = ttk.Frame(canvas)
scrollable_frame.bind("<Configure>", lambda e: canvas.configure(scrollregion=canvas.bbox('all')))
canvas.create_window((0,0), window=scrollable_frame, anchor='nw')
canvas.configure(yscrollcommand=scrollbar.set)
canvas2 = tk.Canvas(tab2)
scrollbar2 = ttk.Scrollbar(tab2, orient='vertical', command=canvas2.yview)
scrollable_frame2 = ttk.Frame(canvas2)
scrollable_frame2.bind("<Configure>", lambda e: canvas2.configure(scrollregion=canvas2.bbox('all')))
canvas2.create_window((0,0), window=scrollable_frame2, anchor='nw')
canvas2.configure(yscrollcommand=scrollbar2.set)
bottom.pack()
canvas.pack(side='left', fill='both', expand=True)
scrollbar.pack(side='right', fill='y')
canvas2.pack(side='left', fill='both', expand=True)
scrollbar2.pack(side='right', fill='y')
self.ents = self.makeform(scrollable_frame, transSweepFields, transSweepParams)
self.ents2 = self.makeform(scrollable_frame2, ivSweepFields, ivSweepParams)
b1 = tk.Button(bottom, text='Reset Sweep',
command=(lambda : self.restoreDefaultSettings(tab_control)))
b1.pack()
self.root.bind('<Return>', (lambda event, e=self.ents: self.fetch(e)))
# Setup the device parameters tab
def setupParamsTab(self):
frame1 = tk.Frame(self.ltab2)
frame2 = tk.Frame(self.ltab2)
dielecLabel1 = tk.Label(frame1, text='Top Dielectric')
self.dielecCombo1 = ttk.Combobox(frame1, state='readonly', width=30)
dielecLabel2 = tk.Label(frame2, text='Bottom Dielectric')
self.dielecCombo2 = ttk.Combobox(frame2, state='readonly', width=30)
dielecs = self.io.loadDielectrics(self.root)
vals = []
i = 0
for i in range(len(dielecs)):
vals.append(dielecs[i][0] + " (Ɛr=" + str(dielecs[i][1]) + "," + " ħω=" + str(dielecs[i][2]) + " meV)")
self.dielecCombo1['values'] = vals
self.dielecCombo1.current(topDielecDef) # Fifth value in list is default
self.dielecCombo2['values'] = vals
self.dielecCombo2.current(bottomDielecDef) # First value in list is default
self.root.bind("<<ComboboxSelected>>")
frame1.pack(side=tk.TOP, fill=tk.X, padx=5, pady=5)
frame2.pack(fill=tk.X, padx=5, pady=5)
dielecLabel1.pack(side=tk.LEFT)
self.dielecCombo1.pack(side=tk.RIGHT)
dielecLabel2.pack(side=tk.LEFT)
self.dielecCombo2.pack(side=tk.RIGHT)
subFrame = tk.Frame()
# Only have n- or p-type mobility if Mukherjee model
#if self.model == "Mukherjee":
# self.ents3 = self.makeform(self.ltab2, fields2, params2)
if self.model == "Jimenez":
self.ents3 = self.makeform(self.ltab2, fields2, params2)
self.root.bind('<Return>', (lambda event, e=self.ents3: self.fetch(e)))
# Setup the top frame
def setupTopFrame(self,top):
b1 = tk.Button(top, text='Simulate',
command=(lambda e=self.ents, e2=self.ents2, e3 = self.ents3:
self.loadModel(self.modelCombo.get(), self.VtgSweepCombo.get(),
self.VdsSweepCombo.get(), e, e2, e3)))
b1.pack(side='left')
b2 = tk.Menubutton(top, text='External Sweeps')
b2.menu = tk.Menu(b2)
b2["menu"] = b2.menu
b2.menu.add_command(label="Load Transfer Chars Sweep",
command=(lambda:self.loadSweep("Gate")))
b2.menu.add_command(label="Load IV Chars Sweep",
command=(lambda:self.loadSweep("Drain")))
b2.menu.add_command(label="Export Transfer Sweep Template",
command=(lambda:self.io.expTemp('Vds:', 'Vtg:')))
b2.menu.add_command(label="Export IV Sweep Template",
command=(lambda:self.io.expTemp('Vtg:', 'Vds:')))
b2.pack(side='left')
b3 = tk.Menubutton(top, text='Export Data')
b3.menu = tk.Menu(b3)
b3["menu"] = b3.menu
b3.menu.add_command(label="Export Transfer Characteristics",
command=(lambda : self.io.exportTransferChars(self.data)))
b3.menu.add_command(label="Export I-V Characteristics",
command=(lambda : self.io.exportIVChars(self.data)))
b3.menu.add_command(label="Export Frequency Response",
command=(lambda : self.io.exportFreq(self.data)))
b3.menu.add_command(label="Export SPICE Model",
command=(lambda : self.io.exportSPICEModel(self.modelCombo.get(), self.fetch(self.ents3), self.dielecCombo1, self.dielecCombo2)))
b3.pack(side='left')
# If external sweep loaded, allows normal sweep to be run
def restoreDefaultSettings(self, notebook):
current = notebook.index("current")
if self.io.extTransSweep:
self.io.extTransSweep = False
elif self.io.extIVSweep:
self.io.extIVSweep = False
if current == 0: # Trans sweep
for index,entry in enumerate(self.ents):
entry[1].config(state="normal", validate="key")
entry[1].delete(0, len(entry[1].get()))
entry[1].insert(0, transSweepParams[index])
elif current == 1: # IV sweep
for index,entry in enumerate(self.ents2):
entry[1].config(state="normal", validate="key")
entry[1].delete(0, len(entry[1].get()))
entry[1].insert(0, ivSweepParams[index])