Skip to content

torch_musa is an open source repository based on PyTorch, which can make full use of the super computing power of MooreThreads graphics cards.

License

Notifications You must be signed in to change notification settings

MooreThreads/torch_musa

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Torch MUSA_Logo

Build Status

torch_musa is an extended Python package based on PyTorch. Developing torch_musa in a plug-in way allows torch_musa to be decoupled from PyTorch, which is convenient for code maintenance. Combined with PyTorch, users can take advantage of the strong power of Moore Threads graphics cards through torch_musa. In addition, torch_musa has two significant advantages:

  • CUDA compatibility could be achieved in torch_musa, which greatly reduces the workload of adapting new operators.
  • torch_musa API is consistent with PyTorch in format, which allows users accustomed to PyTorch to migrate smoothly to torch_musa.

torch_musa also provides a bundle of tools for users to conduct cuda-porting, building musa extension and debugging. Please refer to README.md of torch_musa.utils.


Installation

From Python Package

# for Python3.8
pip install torch-2.0.0-cp38-cp38-linux_x86_64.whl
pip install torch_musa-2.0.0-cp38-cp38-linux_x86_64.whl

# for Python3.9
pip install torch-2.0.0-cp39-cp39-linux_x86_64.whl
pip install torch_musa-2.0.0-cp39-cp39-linux_x86_64.whl

# for python3.10
pip install torch-2.0.0-cp310-cp310-linux_x86_64.whl
pip install torch_musa-2.0.0-cp310-cp310-linux_x86_64.whl

From Source

Prerequisites

NOTE: Since some of the dependent libraries are in beta and have not yet been officially released, we recommend using the development docker provided below to compile torch_musa. If you really want to compile torch_musa in your own environment, then please contact us for additional dependencies.

Install Dependencies

apt-get install ccache
apt-get install libomp-11-dev
pip install -r requirements.txt

Set Important Environment Variables

export MUSA_HOME=path/to/musa_libraries(including mudnn and musa_toolkits) # defalut value is /usr/local/musa/
export LD_LIBRARY_PATH=$MUSA_HOME/lib:$LD_LIBRARY_PATH
# if PYTORCH_REPO_PATH is not set, PyTorch-v2.0.0 will be downloaded outside this directory when building with build.sh
export PYTORCH_REPO_PATH=path/to/PyTorch source code

Building With Script (Recommended)

bash build.sh   # build original PyTorch and torch_musa from scratch

# Some important parameters are as follows:
bash build.sh --torch  # build original PyTorch only
bash build.sh --musa   # build torch_musa only
bash build.sh --fp64   # compile fp64 in kernels using mcc in torch_musa
bash build.sh --debug  # build in debug mode
bash build.sh --asan   # build in asan mode
bash build.sh --clean  # clean everything built and build

Building Step by Step From Source

  1. Apply PyTorch patches
bash build.sh --patch
  1. Building PyTorch
cd pytorch
pip install -r requirements.txt
python setup.py install
# debug mode: DEBUG=1 python setup.py install
# asan mode:  USE_ASAN=1 python setup.py install
  1. Building torch_musa
cd torch_musa
pip install -r requirements.txt
python setup.py install
# debug mode: DEBUG=1 python setup.py install
# asan mode:  USE_ASAN=1 python setup.py install

Docker Image

NOTE: If you want to use torch_musa in docker container, please install mt-container-toolkit first and use '--env MTHREADS_VISIBLE_DEVICES=all' when starting a container. During its initial startup, Docker performs a self-check. The unit tests and integration test results for torch_musa in the develop docker are located in /home/integration_test_output.txt and /home/ut_output.txt. The develop docker has already installed torch and torch_musa and the source code is located in /home.

Docker Image for Developer

#To run the Docker for qy2, simply replace 'qy1' with 'qy2' in the following command.
#To run the Docker for different python version, simply replace 'py39' 'py310' with 'py38' in the following command.
#Python3.8
docker run -it --privileged --pull always --network=host --name=torch_musa_dev --env MTHREADS_VISIBLE_DEVICES=all --shm-size=80g sh-harbor.mthreads.com/mt-ai/musa-pytorch-dev-py38:rc2.1.0-v1.1.0-qy1 /bin/bash
Docker Image List
Docker Tag Description
rc2.1.0-v1.1.0-qy1/rc2.1.0-v1.1.0-qy2
Python3.8
Python3.9
Python3.10
musatoolkits rc2.1.0
mudnn rc2.5.0
mccl rc2.0.0
muAlg_dev-0.3.0
muSPARSE_dev0.1.0
muThrust_dev-0.3.0
torch_musa branch v1.1.0-rc1

Docker Image for User

#To run the Docker for qy2, simply replace 'qy1' with 'qy2' in the following command.
#python3.8
docker run -it --privileged --pull always --network=host --name=torch_musa_release --env MTHREADS_VISIBLE_DEVICES=all --shm-size=80g sh-harbor.mthreads.com/mt-ai/musa-pytorch-release-py38:rc2.1.0-v1.1.0-qy1 /bin/bash
Docker Image List
Docker Tag Description
rc2.1.0-v1.1.0-qy1/rc2.1.0-v1.1.0-qy2
Python3.8
Python3.9
Python3.10
musatoolkits rc2.1.0
mudnn rc2.5.0
mccl rc2.0.0
muAlg_dev-0.3.0
muSPARSE_dev0.1.0
muThrust_dev-0.3.0
torch_musa branch v1.1.0-rc1

Getting Started

Coding Style

torch_musa mainly follows Google C++ style and customized PEP8 Python style. You can use the linting tools under tools/lint to check if coding styles are correctly followed.

# Check Python linting errors
bash tools/lint/pylint.sh --rev main

# Check C++ linting errorrs
bash tools/lint/git-clang-format.sh --rev main

You can use the following command to fix C++ linting errors with clang-format-11 and above.

bash tools/lint/git-clang-format.sh -i --rev main

Python errors are slightly different. tools/lint/git-black.sh can be used to format the Python code, but other linting errors, e.g. naming, still needs to be fixed manually according to the prompted errors.

Key Changes

The following two key changes are required when using torch_musa:

  • Import torch_musa package

    import torch
    import torch_musa
  • Change the device to musa

    import torch
    import torch_musa
    
    a = torch.tensor([1.2, 2.3], dtype=torch.float32, device='musa')
    b = torch.tensor([1.2, 2.3], dtype=torch.float32, device='cpu').to('musa')
    c = torch.tensor([1.2, 2.3], dtype=torch.float32).musa()

torch musa has integrated torchvision ops in the musa backend. Please do the following if torchvision is not installed:

  • Install torchvision package via building from source
    # ensure torchvision is not installed
    pip uninstall torchvision
    
    git clone https://github.com/pytorch/vision.git
    cd vision
    python setup.py install
    
  • Use torchvision musa backend:
    import torch
    import torch_musa
    import torchvision
    
    def get_forge_data(num_boxes):
        boxes = torch.cat((torch.rand(num_boxes, 2), torch.rand(num_boxes, 2) + 10), dim=1)
        assert max(boxes[:, 0]) < min(boxes[:, 2])  # x1 < x2
        assert max(boxes[:, 1]) < min(boxes[:, 3])  # y1 < y2
        scores = torch.rand(num_boxes)
        return boxes, scores
    
    num_boxes = 10
    boxes, scores = get_forge_data(num_boxes)
    iou_threshold = 0.5
    print(torchvision.ops.nms(boxes=boxes.to("musa"), scores=scores.to("musa"), iou_threshold=iou_threshold))
    

Example of Frequently Used APIs

code
import torch
import torch_musa

torch.musa.is_available()
torch.musa.device_count()
torch.musa.synchronize()

with torch.musa.device(0):
    assert torch.musa.current_device() == 0

if torch.musa.device_count() > 1:
    torch.musa.set_device(1)
    assert torch.musa.current_device() == 1
    torch.musa.synchronize("musa:1")

a = torch.tensor([1.2, 2.3], dtype=torch.float32, device='musa')
b = torch.tensor([1.8, 1.2], dtype=torch.float32, device='musa')
c = a + b

Example of Inference Demo

code
import torch
import torch_musa
import torchvision.models as models

model = models.resnet50().eval()
x = torch.rand((1, 3, 224, 224), device="musa")
model = model.to("musa")
# Perform the inference
y = model(x)

Example of Training Demo

code
import torch
import torch_musa
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 1. prepare dataset
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
train_set = torchvision.datasets.CIFAR10(root='./data',
                                         train=True,
                                         download=True,
                                         transform=transform)
train_loader = torch.utils.data.DataLoader(train_set,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=2)
test_set = torchvision.datasets.CIFAR10(root='./data',
                                        train=False,
                                        download=True,
                                        transform=transform)
test_loader = torch.utils.data.DataLoader(test_set,
                                          batch_size=batch_size,
                                          shuffle=False,
                                          num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
device = torch.device("musa")

# 2. build network
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = torch.flatten(x, 1) # flatten all dimensions except batch
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net().to(device)

# 3. define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 4. train
for epoch in range(2):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs.to(device))
        loss = criterion(outputs, labels.to(device))
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 2000 == 1999:
            print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
            running_loss = 0.0
print('Finished Training')
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
net.load_state_dict(torch.load(PATH))

# 5. test
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        images, labels = data
        outputs = net(images.to(device))
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels.to(device)).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')

Codegen

In torch_musa, we provide the codegen module to implement bindings and registrations of customized MUSA kernels, see link.

FAQ

How to Update the Underlying Libraries

Please refer to the README.md inside directory docker/common.

For More Detailed Information

Please refer to the files in the docs folder.

How Many Ops Are Supported

Please refer to the op_list.md

About

torch_musa is an open source repository based on PyTorch, which can make full use of the super computing power of MooreThreads graphics cards.

Resources

License

Stars

Watchers

Forks

Packages

No packages published