-
Notifications
You must be signed in to change notification settings - Fork 713
/
plot.py
56 lines (47 loc) · 1.79 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import matplotlib.pyplot as plt
import numpy as np
import torch
LINE_COLORS = ['w', 'r', 'y', 'cyan', 'm', 'b', 'lime']
def spec_to_figure(spec, vmin=None, vmax=None):
if isinstance(spec, torch.Tensor):
spec = spec.cpu().numpy()
fig = plt.figure(figsize=(12, 6))
plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
return fig
def spec_f0_to_figure(spec, f0s, figsize=None):
max_y = spec.shape[1]
if isinstance(spec, torch.Tensor):
spec = spec.detach().cpu().numpy()
f0s = {k: f0.detach().cpu().numpy() for k, f0 in f0s.items()}
f0s = {k: f0 / 10 for k, f0 in f0s.items()}
fig = plt.figure(figsize=(12, 6) if figsize is None else figsize)
plt.pcolor(spec.T)
for i, (k, f0) in enumerate(f0s.items()):
plt.plot(f0.clip(0, max_y), label=k, c=LINE_COLORS[i], linewidth=1, alpha=0.8)
plt.legend()
return fig
def dur_to_figure(dur_gt, dur_pred, txt):
dur_gt = dur_gt.long().cpu().numpy()
dur_pred = dur_pred.long().cpu().numpy()
dur_gt = np.cumsum(dur_gt)
dur_pred = np.cumsum(dur_pred)
fig = plt.figure(figsize=(12, 6))
for i in range(len(dur_gt)):
shift = (i % 8) + 1
plt.text(dur_gt[i], shift, txt[i])
plt.text(dur_pred[i], 10 + shift, txt[i])
plt.vlines(dur_gt[i], 0, 10, colors='b') # blue is gt
plt.vlines(dur_pred[i], 10, 20, colors='r') # red is pred
return fig
def f0_to_figure(f0_gt, f0_cwt=None, f0_pred=None):
fig = plt.figure()
f0_gt = f0_gt.cpu().numpy()
plt.plot(f0_gt, color='r', label='gt')
if f0_cwt is not None:
f0_cwt = f0_cwt.cpu().numpy()
plt.plot(f0_cwt, color='b', label='cwt')
if f0_pred is not None:
f0_pred = f0_pred.cpu().numpy()
plt.plot(f0_pred, color='green', label='pred')
plt.legend()
return fig