|
| 1 | +/* |
| 2 | +Check Square |
| 3 | +Send Feedback |
| 4 | +You are given four points on a two-dimensional coordinate system. |
| 5 | +Can you check if those four points make a square? |
| 6 | +Example: |
| 7 | +Let the input be [1,0,2,1] and [0,1,1,2]. |
| 8 | +So, the coordinates of the four points be [ {1, 0}, {0, 1}, {2, 1}, {1, 2} ] |
| 9 | +example |
| 10 | +
|
| 11 | +From the above image, we can see that it is a square. Thus, the output will be ‘Yes’. |
| 12 | +Input format: |
| 13 | +The first line of input contains an integer ‘T’ denoting the number of test cases. |
| 14 | +
|
| 15 | +The first line of each test case contains four space-separated integers representing x-coordinates of the four points. |
| 16 | +
|
| 17 | +The second line of each test case contains four space-separated integers representing y-coordinates of the four points. |
| 18 | +Output format : |
| 19 | +For each test case, print ‘Yes’ if four points make a square otherwise print ‘No’. |
| 20 | +Note: |
| 21 | +Don’t print anything, just return True if four points make a square otherwise return False. |
| 22 | +Constraints: |
| 23 | +1 <= T <= 10^4 |
| 24 | +-10^9 <= xi, yi <= 10^9 |
| 25 | +
|
| 26 | +Time limit: 1 sec |
| 27 | +Sample Input 1: |
| 28 | +2 |
| 29 | +1 0 2 1 |
| 30 | +0 1 1 2 |
| 31 | +1 0 0 1 |
| 32 | +1 0 1 2 |
| 33 | +Sample Output 1: |
| 34 | +Yes |
| 35 | +No |
| 36 | +Explanation For Sample Input 1: |
| 37 | +Test Case 1: Refer to the example described above. |
| 38 | +
|
| 39 | +Test Case 2: |
| 40 | + The quadrilateral for the given four points is represented below. |
| 41 | +test case 2 |
| 42 | +
|
| 43 | +As we can clearly see this is not a square. Thus, the answer will be ‘No’. |
| 44 | +Sample Input 2: |
| 45 | +2 |
| 46 | +1 2 4 2 |
| 47 | +0 2 4 2 |
| 48 | +0 1 2 3 |
| 49 | +1 -1 2 0 |
| 50 | +Sample Output 2: |
| 51 | +No |
| 52 | +Yes |
| 53 | +*/ |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | +/* |
| 58 | + Time Complexity: O(1) |
| 59 | + Space Complexity: O(1) |
| 60 | +*/ |
| 61 | + |
| 62 | +#include <algorithm> |
| 63 | + |
| 64 | +bool isSquare(vector<int> x, vector<int> y) { |
| 65 | + vector<long long> distSq; |
| 66 | + for(int i = 0; i < 4; i++) { |
| 67 | + for(int j = i + 1 ; j < 4; j++) { |
| 68 | + long long dist = (1LL * (x[i] - x[j]) * (x[i] - x[j])) + (1LL * (y[i] - y[j]) * (y[i] - y[j])); |
| 69 | + distSq.push_back(dist); |
| 70 | + } |
| 71 | + } |
| 72 | + |
| 73 | + sort(distSq.begin(), distSq.end()); |
| 74 | + |
| 75 | + |
| 76 | + //Check if the distance of all the sides are equal |
| 77 | + //and the length of the diagonals are equal to the length of each side * root(2). |
| 78 | + if(distSq[0] == distSq[1] && |
| 79 | + distSq[1] == distSq[2] && |
| 80 | + distSq[2] == distSq[3] && |
| 81 | + distSq[4] == distSq[5] && |
| 82 | + distSq[0] * 2LL == distSq[4] && |
| 83 | + distSq[0] > 0){ |
| 84 | + return true; |
| 85 | + } |
| 86 | + return false; |
| 87 | +} |
0 commit comments