|
| 1 | +/* |
| 2 | +Count Special Palindromic Substrings |
| 3 | +Send Feedback |
| 4 | +You are given a string 'STR'. Your task is to count the number of special palindromic substrings of size greater than 1 that the given string contains. A substring is said to be a special palindrome in the following two cases: |
| 5 | +If all the characters in the substring are the same. |
| 6 | +
|
| 7 | +If the length of the substring is odd and only the middle element is different, while all the other characters are the same. |
| 8 | +Example: |
| 9 | +“aba” is a special palindrome, while “abaa” is not |
| 10 | +Input Format: |
| 11 | +The first line contains an integer ‘T’, which denotes the number of test cases or queries to be run. Then the test cases are as follows. |
| 12 | +
|
| 13 | +The first and the only line of each test case contains the string 'STR'. |
| 14 | +Output Format: |
| 15 | +For each test case, print the count of special palindromic substrings. |
| 16 | +
|
| 17 | +Print the output of each test case in a separate line. |
| 18 | +Note: |
| 19 | +You don’t need to print anything; It has already been taken care of. Just implement the given function. |
| 20 | +Constraints: |
| 21 | +1 <= T <= 100 |
| 22 | +1 <= |STR| <= 10000 |
| 23 | +
|
| 24 | +Time limit: 1 sec |
| 25 | +Sample Input 1: |
| 26 | +2 |
| 27 | +bcbc |
| 28 | +ccddd |
| 29 | +Sample Output 1: |
| 30 | +2 |
| 31 | +4 |
| 32 | +Explanation For Sample Input 1: |
| 33 | +In the first test case, |
| 34 | +The special palindromic substrings in the given string are: bcb and cbc. Hence, the answer is 2 in this case. |
| 35 | +
|
| 36 | +In the second test case, |
| 37 | +The special palindromic substrings in the string are: cc, dd, ddd and dd. Hence, the answer is 4 in this case. |
| 38 | +Sample Input 2: |
| 39 | +2 |
| 40 | +abccdcdf |
| 41 | +baabaab |
| 42 | +Sample Output 2: |
| 43 | +3 |
| 44 | +4 |
| 45 | +*/ |
| 46 | + |
| 47 | + |
| 48 | + |
| 49 | +/* |
| 50 | + Time complexity: O(N) |
| 51 | + Space complexity: O(N) |
| 52 | + |
| 53 | + Where N is the size of the string. |
| 54 | +*/ |
| 55 | + |
| 56 | + |
| 57 | +int specialPalindromes(string &str) |
| 58 | +{ |
| 59 | + |
| 60 | + // Initialise ans to store count of special palindromes |
| 61 | + int ans = 0; |
| 62 | + |
| 63 | + // Initialise variable to store length of string |
| 64 | + int n = str.length(); |
| 65 | + |
| 66 | + // Create an array with all values 0 to store count of continuous same characters |
| 67 | + vector<int> countSame(n, 0); |
| 68 | + |
| 69 | + // First pointer |
| 70 | + int a = 0; |
| 71 | + |
| 72 | + // Start traversing through the string |
| 73 | + while(a < n) |
| 74 | + { |
| 75 | + |
| 76 | + // Initialise a variable to store temporary count of continuous same characters |
| 77 | + int countContinuous = 1; |
| 78 | + |
| 79 | + // Initialise a variable to store next character |
| 80 | + int b = a + 1; |
| 81 | + |
| 82 | + // Count same characters |
| 83 | + while(b < n and str[a] == str[b] && (b < n)) |
| 84 | + { |
| 85 | + countContinuous++; |
| 86 | + b++; |
| 87 | + } |
| 88 | + |
| 89 | + // CASE: 1 |
| 90 | + // Count total substrings from the count of continuous same characters |
| 91 | + ans = ans + (countContinuous * (countContinuous - 1) / 2); |
| 92 | + |
| 93 | + // Store this count in the array |
| 94 | + countSame[a] = countContinuous; |
| 95 | + |
| 96 | + a = b; |
| 97 | + } |
| 98 | + |
| 99 | + // CASE: 2 |
| 100 | + for(int i = 1; i < n; i++) |
| 101 | + { |
| 102 | + |
| 103 | + // If current character is equal to previous character |
| 104 | + if(str[i] == str[i - 1]) |
| 105 | + { |
| 106 | + |
| 107 | + // Update values of array |
| 108 | + countSame[i] = countSame[i - 1]; |
| 109 | + } |
| 110 | + |
| 111 | + if(i > 0 && i < (n - 1) && (str[i - 1] == str[i + 1]) && (str[i] != str[i + 1])) |
| 112 | + { |
| 113 | + ans += min(countSame[i - 1], countSame[i + 1]); |
| 114 | + } |
| 115 | + } |
| 116 | + |
| 117 | + // Return count |
| 118 | + return ans; |
| 119 | +} |
0 commit comments