|
| 1 | +/* |
| 2 | +Dijkstra's Algorithm |
| 3 | +Send Feedback |
| 4 | +Given an undirected, connected and weighted graph G(V, E) with V number of vertices (which are numbered from 0 to V-1) and E number of edges. |
| 5 | +Find and print the shortest distance from the source vertex (i.e. Vertex 0) to all other vertices (including source vertex also) using Dijkstra's Algorithm. |
| 6 | +Print the ith vertex number and the distance from source in one line separated by space. Print different vertices in different lines. |
| 7 | +Note : Order of vertices in output doesn't matter. |
| 8 | +Input Format : |
| 9 | +First line will contain T(number of test case), each test case follows as. |
| 10 | +Line 1: Two Integers V and E (separated by space) |
| 11 | +Next E lines : Three integers ei, ej and wi, denoting that there exists an edge between vertex ei and vertex ej with weight wi (separated by space) |
| 12 | +Output Format : |
| 13 | +In different lines, ith vertex number and its distance from source (separated by space) |
| 14 | +Constraints : |
| 15 | +1 <= T <= 10 |
| 16 | +2 <= V, E <= 10^3 |
| 17 | +Sample Input 1 : |
| 18 | +1 |
| 19 | +4 4 |
| 20 | +0 1 3 |
| 21 | +0 3 5 |
| 22 | +1 2 1 |
| 23 | +2 3 8 |
| 24 | +Sample Output 1 : |
| 25 | +0 0 |
| 26 | +1 3 |
| 27 | +2 4 |
| 28 | +3 5 |
| 29 | +*/ |
| 30 | + |
| 31 | + |
| 32 | + |
| 33 | +#include<iostream> |
| 34 | +#include<climits> |
| 35 | +#include<algorithm> |
| 36 | +using namespace std; |
| 37 | +void algo(int** arr, int v, int e, bool* visited, int* dist, int current_vertex) |
| 38 | +{ |
| 39 | + for (int i = 0; i < v - 1; i++) |
| 40 | + { |
| 41 | + int vertex_with_minimum_distance=-1; |
| 42 | + int min_distance = INT_MAX; |
| 43 | + for (int j = 0; j < v; j++) |
| 44 | + { |
| 45 | + if (!visited[j] && min_distance > dist[j]) |
| 46 | + { |
| 47 | + min_distance = dist[j]; |
| 48 | + vertex_with_minimum_distance = j; |
| 49 | + } |
| 50 | + } |
| 51 | + |
| 52 | + visited[vertex_with_minimum_distance] = true; |
| 53 | + for (int j = 0; j < v; j++) |
| 54 | + { |
| 55 | + if (!visited[j] && dist[j] > dist[vertex_with_minimum_distance] + arr[vertex_with_minimum_distance][j] && arr[vertex_with_minimum_distance][j] > 0) |
| 56 | + { |
| 57 | + dist[j] = dist[vertex_with_minimum_distance] + arr[vertex_with_minimum_distance][j]; |
| 58 | + } |
| 59 | + } |
| 60 | + } |
| 61 | +} |
| 62 | +int main() |
| 63 | +{ |
| 64 | + int t;cin>>t; |
| 65 | + while(t--){ |
| 66 | + int v, e; |
| 67 | + cin >> v >> e; |
| 68 | + int** arr = new int*[v]; |
| 69 | + for (int i = 0; i < v; i++) |
| 70 | + { |
| 71 | + arr[i] = new int[v]; |
| 72 | + for (int j = 0; j < v; j++) |
| 73 | + { |
| 74 | + arr[i][j] = 0; |
| 75 | + } |
| 76 | + } |
| 77 | + for (int i = 0; i < e; i++) |
| 78 | + { |
| 79 | + int v1, v2, w; |
| 80 | + cin >> v1 >> v2 >> w; |
| 81 | + arr[v1][v2] = w; |
| 82 | + arr[v2][v1] = w; |
| 83 | + } |
| 84 | + bool* visited = new bool[v]; |
| 85 | + for (int i = 0; i < v; i++) |
| 86 | + { |
| 87 | + visited[i] = false; |
| 88 | + } |
| 89 | + int* dist = new int[v]; |
| 90 | + for (int i = 0; i < v; i++) |
| 91 | + { |
| 92 | + dist[i] = INT_MAX; |
| 93 | + } |
| 94 | + dist[0] = 0; |
| 95 | + algo(arr, v, e, visited, dist, 0); |
| 96 | + for (int i = 0; i < v; i++) |
| 97 | + { |
| 98 | + cout << i << " " << dist[i] << endl; |
| 99 | + } |
| 100 | + } |
| 101 | +} |
0 commit comments