-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathicm.py
69 lines (52 loc) · 2.37 KB
/
icm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch as T
import torch.nn as nn
import torch.nn.functional as F
class ICM(nn.Module):
def __init__(self, input_dims, n_actions=3, alpha=0.5, beta=0.2):
super(ICM, self).__init__()
self.alpha = alpha
self.beta = beta
self.conv1 = nn.Conv2d(input_dims[0], 32, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.phi = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.inverse = nn.Linear(288*2, 256)
self.pi_logits = nn.Linear(256, n_actions)
self.dense1 = nn.Linear(288+1, 256)
self.phi_hat_new = nn.Linear(256, 288)
device = T.device('cpu')
#device = T.device('cuda')
self.to(device)
def forward(self, state, new_state, action):
conv = F.elu(self.conv1(state))
conv = F.elu(self.conv2(conv))
conv = F.elu(self.conv3(conv))
phi = self.phi(conv)
conv_new = F.elu(self.conv1(new_state))
conv_new = F.elu(self.conv2(conv_new))
conv_new = F.elu(self.conv3(conv_new))
phi_new = self.phi(conv_new)
# [T, 32, 3, 3] to [T, 288]
phi = phi.view(phi.size()[0], -1).to(T.float)
phi_new = phi_new.view(phi_new.size()[0], -1).to(T.float)
inverse = self.inverse(T.cat([phi, phi_new], dim=1))
pi_logits = self.pi_logits(inverse)
# from [T] to [T, 1]
action = action.reshape((action.size()[0], 1))
forward_input = T.cat([phi, action], dim=1)
dense = self.dense1(forward_input)
phi_hat_new = self.phi_hat_new(dense)
return phi_new, pi_logits, phi_hat_new
def calc_loss(self, states, new_states, actions):
# don't need [] b/c these are lists of states
states = T.tensor(states, dtype=T.float)
actions = T.tensor(actions, dtype=T.float)
new_states = T.tensor(new_states, dtype=T.float)
phi_new, pi_logits, phi_hat_new = \
self.forward(states, new_states, actions)
inverse_loss = nn.CrossEntropyLoss()
L_I = (1 - self.beta) * inverse_loss(pi_logits, actions.to(T.long))
forward_loss = nn.MSELoss()
L_F = self.beta * forward_loss(phi_hat_new, phi_new)
intrinsic_reward = self.alpha*0.5*((phi_hat_new-phi_new).pow(2)).mean(dim=1)
return intrinsic_reward, L_I, L_F