-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathna8st.mod
290 lines (125 loc) · 4.54 KB
/
na8st.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
: Eight state kinetic sodium channel gating scheme
: Modified from k3st.mod, chapter 9.9 (example 9.7)
: of the NEURON book
: 12 August 2008, Christoph Schmidt-Hieber
:
: accompanies the publication:
: Schmidt-Hieber C, Bischofberger J. (2010)
: Fast sodium channel gating supports localized and efficient
: axonal action potential initiation.
: J Neurosci 30:10233-42
NEURON {
SUFFIX na
USEION ca READ eca WRITE ica
USEION na READ ena WRITE ina
GLOBAL vShift, vShift_inact, maxrate, enat
RANGE vShift_inact_local
RANGE gna, gbar, ina, ica
GLOBAL a1_0, a1_1, b1_0, b1_1, a2_0, a2_1
GLOBAL b2_0, b2_1, a3_0, a3_1, b3_0, b3_1
GLOBAL bh_0, bh_1, bh_2, ah_0, ah_1, ah_2
}
UNITS { (mV) = (millivolt) }
: initialize parameters
PARAMETER {
: gbar = 33 (millimho/cm2)
gbar = 1000 (pS/um2)
a1_0 = 4.584982656184167e+01 (/ms)
a1_1 = 2.393541665657613e-02 (/mV)
b1_0 = 1.440952344322651e-02 (/ms)
b1_1 = 8.847609128769419e-02 (/mV)
a2_0 = 1.980838207143563e+01 (/ms)
a2_1 = 2.217709530008501e-02 (/mV)
b2_0 = 5.650174488683913e-01 (/ms)
b2_1 = 6.108403283302217e-02 (/mV)
a3_0 = 7.181189201089192e+01 (/ms)
a3_1 = 6.593790601261940e-02 (/mV)
b3_0 = 7.531178253431512e-01 (/ms)
b3_1 = 3.647978133116471e-02 (/mV)
bh_0 = 2.830146966213825e+00 (/ms)
bh_1 = 2.890045633775495e-01
bh_2 = 6.960300544163878e-02 (/mV)
ah_0 = 5.757824421450554e-01 (/ms)
ah_1 = 1.628407420157048e+02
ah_2 = 2.680107016756367e-02 (/mV)
vShift = 12 (mV) : shift to the right to account for Donnan potentials
: 12 mV for cclamp, 0 for oo-patch vclamp simulations
vShift_inact = 10 (mV) : global additional shift to the right for inactivation
: 10 mV for cclamp, 0 for oo-patch vclamp simulations
vShift_inact_local = 0 (mV) : additional shift to the right for inactivation, used as local range variable
maxrate = 8.00e+03 (/ms) : limiting value for reaction rates
: See Patlak, 1991
temp = 23 (degC) : original temp
q10 = 2.3 : temperature sensitivity
q10h = 2.3 : temperature sensitivity for inactivatoin
celsius (degC)
enat=60 (mV)
}
ASSIGNED {
v (mV)
ena (mV)
gna (millimho/cm2)
ina (milliamp/cm2)
eca (mV)
ica (milliamp/cm2)
ina_ina (milliamp/cm2) :to monitor
a1 (/ms)
b1 (/ms)
a2 (/ms)
b2 (/ms)
a3 (/ms)
b3 (/ms)
ah (/ms)
bh (/ms)
tadj
tadjh
}
STATE { c1 c2 c3 i1 i2 i3 i4 o }
BREAKPOINT {
SOLVE kin METHOD sparse
gna = gbar*o
: ina = g*(v - ena)*(1e-3)
ina = gna*(v - ena)*(1e-4) : define gbar as pS/um2 instead of mllimho/cm2
ina_ina = gna*(v - ena)*(1e-4) : define gbar as pS/um2 instead of mllimho/cm2 :to monitor
ica = gna*(v - 70)*(1e-4)*0.4/100
}
INITIAL { SOLVE kin STEADYSTATE sparse }
KINETIC kin {
rates(v)
~ c1 <-> c2 (a1, b1)
~ c2 <-> c3 (a2, b2)
~ c3 <-> o (a3, b3)
~ i1 <-> i2 (a1, b1)
~ i2 <-> i3 (a2, b2)
~ i3 <-> i4 (a3, b3)
~ i1 <-> c1 (ah, bh)
~ i2 <-> c2 (ah, bh)
~ i3 <-> c3 (ah, bh)
~ i4 <-> o (ah, bh)
CONSERVE c1 + c2 + c3 + i1 + i2 + i3 + i4 + o = 1
}
: FUNCTION_TABLE tau1(v(mV)) (ms)
: FUNCTION_TABLE tau2(v(mV)) (ms)
PROCEDURE rates(v(millivolt)) {
LOCAL vS
vS = v-vShift
tadj = q10^((celsius - temp)/10)
tadjh = q10h^((celsius - temp)/10)
: maxrate = tadj*maxrate
a1 = tadj*a1_0*exp( a1_1*vS)
a1 = a1*maxrate / (a1+maxrate)
b1 = tadj*b1_0*exp(-b1_1*vS)
b1 = b1*maxrate / (b1+maxrate)
a2 = tadj*a2_0*exp( a2_1*vS)
a2 = a2*maxrate / (a2+maxrate)
b2 = tadj*b2_0*exp(-b2_1*vS)
b2 = b2*maxrate / (b2+maxrate)
a3 = tadj*a3_0*exp( a3_1*vS)
a3 = a3*maxrate / (a3+maxrate)
b3 = tadj*b3_0*exp(-b3_1*vS)
b3 = b3*maxrate / (b3+maxrate)
bh = tadjh*bh_0/(1+bh_1*exp(-bh_2*(vS-vShift_inact-vShift_inact_local)))
bh = bh*maxrate / (bh+maxrate)
ah = tadjh*ah_0/(1+ah_1*exp( ah_2*(vS-vShift_inact-vShift_inact_local)))
ah = ah*maxrate / (ah+maxrate)
}