-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCaT3_1.mod
141 lines (107 loc) · 2.84 KB
/
CaT3_1.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
TITLE T-type VGCC
COMMENT
T-type VGCC. Starting from the formulation for T-type VGCCs in Anwar et al., 2012, we multiplied the
activation curve by a sigmoid function to account for the observed activation at hyperpolarised and
intermediate states. The activation time was decreased by 70% while the inactivation time was
doubled to fit the rise and decay of the experimental V m trace at the hyperpolarised state.
Current Model Reference: Karima Ait Ouares , Luiza Filipis , Alexandra Tzilivaki , Panayiota Poirazi , Marco Canepari
(2018) Two distinct sets of Ca 2+ and K + channels
are activated at different membrane potential by the climbing fibre synaptic potential in Purkinje neuron dendrites.
PubMed link:
Contact: Filipis Luiza (luiza.filipis@univ-grenoble-alpes.fr)
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX CaT3_1
USEION ca READ cai, cao WRITE ica VALENCE 2
RANGE g, pcabar, minf, taum, hinf, tauh
RANGE ica, m ,h, t1,t2
}
UNITS {
(molar) = (1/liter)
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (millimolar)
}
CONSTANT {
F = 9.6485e4 (coulombs)
R = 8.3145 (joule/kelvin)
}
PARAMETER {
v (mV)
t1=0.6
t2=55
celsius (degC)
eca (mV)
pcabar = 2.5e-4 (cm/s)
cai (mM) : adjusted for eca=120 mV
cao (mM)
v0_m_inf = -55 (mV)
v0_h_inf = -72 (mV)
k_m_inf = -5 (mV)
k_h_inf = 7 (mV)
C_tau_m = 1
A_tau_m = 1.0
v0_tau_m1 = -40 (mV)
v0_tau_m2 = -102 (mV)
k_tau_m1 = 9 (mV)
k_tau_m2 = -18 (mV)
C_tau_h = 15
A_tau_h = 1.0
v0_tau_h1 = -32 (mV)
k_tau_h1 = 7 (mV)
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
g (coulombs/cm3)
minf
taum (ms)
hinf
tauh (ms)
T (kelvin)
E (volt)
zeta
}
BREAKPOINT {
SOLVE castate METHOD cnexp
ica = (1e3) *pcabar*m*m *h * g
}
DERIVATIVE castate {
evaluate_fct(v)
m' = (minf - m) / taum
h' = (hinf - h) / tauh
}
FUNCTION ghk( v (mV), ci (mM), co (mM), z ) (coulombs/cm3) {
E = (1e-3) * v
zeta = (z*F*E)/(R*T)
if ( fabs(1-exp(-zeta)) < 1e-6 ) {
ghk = (1e-6) * (z*F) * (ci - co*exp(-zeta)) * (1 + zeta/2)
} else {
ghk = (1e-6) * (z*zeta*F) * (ci - co*exp(-zeta)) / (1-exp(-zeta))
}
}
UNITSOFF
INITIAL {
T = kelvinfkt (celsius)
evaluate_fct(v)
m = minf
h = hinf
}
PROCEDURE evaluate_fct(v(mV)) {
minf = ((1/(1+exp(-t1*(v+t2))))/(1 + exp(-(v+51)/6)))
hinf = 1.0 / ( 1 + exp((v - v0_h_inf)/k_h_inf) )
if (v<=-90) {
taum = 1
} else {
taum = 0.2 / (exp((v +40)/ 9) + exp(-(v +108)/18))+0.3
}
tauh = 2*( C_tau_h + A_tau_h / exp((v - v0_tau_h1)/k_tau_h1) )
g = ghk(v, cai, cao, 2)
}
FUNCTION kelvinfkt( t (degC) ) (kelvin) {
kelvinfkt = 273.19 + t
}
UNITSON