-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnarsg.mod
197 lines (177 loc) · 4.33 KB
/
narsg.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
TITLE Rsg sodium channel
: FORREST MD (2014) Two Compartment Model of the Cerebellar Purkinje Neuron
: Resurgent sodium channel (with blocking particle)
: with updated kinetic parameters from Raman and Bean
NEURON {
SUFFIX narsg
USEION na READ ena WRITE ina
RANGE g, gbar
}
UNITS {
(mV) = (millivolt)
(S) = (siemens)
}
PARAMETER {
gbar = .015 (S/cm2)
: kinetic parameters
Con = 0.005 (/ms) : closed -> inactivated transitions
Coff = 0.5 (/ms) : inactivated -> closed transitions
Oon = .75 (/ms) : open -> Ineg transition
Ooff = 0.005 (/ms) : Ineg -> open transition
alpha = 150 (/ms) : activation
beta = 3 (/ms) : deactivation
gamma = 150 (/ms) : opening
delta = 40 (/ms) : closing, greater than BEAN/KUO = 0.2
epsilon = 1.75 (/ms) : open -> Iplus for tau = 0.3 ms at +30 with x5
zeta = 0.03 (/ms) : Iplus -> open for tau = 25 ms at -30 with x6
: Vdep
x1 = 20 (mV) : Vdep of activation (alpha)
x2 = -20 (mV) : Vdep of deactivation (beta)
x3 = 1e12 (mV) : Vdep of opening (gamma)
x4 = -1e12 (mV) : Vdep of closing (delta)
x5 = 1e12 (mV) : Vdep into Ipos (epsilon)
x6 = -25 (mV) : Vdep out of Ipos (zeta)
}
ASSIGNED {
alfac : microscopic reversibility factors
btfac
: rates
f01 (/ms)
f02 (/ms)
f03 (/ms)
f04 (/ms)
f0O (/ms)
fip (/ms)
f11 (/ms)
f12 (/ms)
f13 (/ms)
f14 (/ms)
f1n (/ms)
fi1 (/ms)
fi2 (/ms)
fi3 (/ms)
fi4 (/ms)
fi5 (/ms)
fin (/ms)
b01 (/ms)
b02 (/ms)
b03 (/ms)
b04 (/ms)
b0O (/ms)
bip (/ms)
b11 (/ms)
b12 (/ms)
b13 (/ms)
b14 (/ms)
b1n (/ms)
bi1 (/ms)
bi2 (/ms)
bi3 (/ms)
bi4 (/ms)
bi5 (/ms)
bin (/ms)
v (mV)
ena (mV)
ina (milliamp/cm2)
g (S/cm2)
}
STATE {
C1 FROM 0 TO 1
C2 FROM 0 TO 1
C3 FROM 0 TO 1
C4 FROM 0 TO 1
C5 FROM 0 TO 1
I1 FROM 0 TO 1
I2 FROM 0 TO 1
I3 FROM 0 TO 1
I4 FROM 0 TO 1
I5 FROM 0 TO 1
O FROM 0 TO 1
B FROM 0 TO 1
I6 FROM 0 TO 1
}
BREAKPOINT {
SOLVE activation METHOD sparse
g = gbar * O
ina = g * (v - ena)
}
INITIAL {
rates(v)
SOLVE seqinitial
}
KINETIC activation
{
rates(v)
~ C1 <-> C2 (f01,b01)
~ C2 <-> C3 (f02,b02)
~ C3 <-> C4 (f03,b03)
~ C4 <-> C5 (f04,b04)
~ C5 <-> O (f0O,b0O)
~ O <-> B (fip,bip)
~ O <-> I6 (fin,bin)
~ I1 <-> I2 (f11,b11)
~ I2 <-> I3 (f12,b12)
~ I3 <-> I4 (f13,b13)
~ I4 <-> I5 (f14,b14)
~ I5 <-> I6 (f1n,b1n)
~ C1 <-> I1 (fi1,bi1)
~ C2 <-> I2 (fi2,bi2)
~ C3 <-> I3 (fi3,bi3)
~ C4 <-> I4 (fi4,bi4)
~ C5 <-> I5 (fi5,bi5)
CONSERVE C1 + C2 + C3 + C4 + C5 + O + B + I1 + I2 + I3 + I4 + I5 + I6 = 1
}
LINEAR seqinitial { : sets initial equilibrium
~ I1*bi1 + C2*b01 - C1*( fi1+f01) = 0
~ C1*f01 + I2*bi2 + C3*b02 - C2*(b01+fi2+f02) = 0
~ C2*f02 + I3*bi3 + C4*b03 - C3*(b02+fi3+f03) = 0
~ C3*f03 + I4*bi4 + C5*b04 - C4*(b03+fi4+f04) = 0
~ C4*f04 + I5*bi5 + O*b0O - C5*(b04+fi5+f0O) = 0
~ C5*f0O + B*bip + I6*bin - O*(b0O+fip+fin) = 0
~ O*fip + B*bip = 0
~ C1*fi1 + I2*b11 - I1*( bi1+f11) = 0
~ I1*f11 + C2*fi2 + I3*b12 - I2*(b11+bi2+f12) = 0
~ I2*f12 + C3*fi3 + I4*bi3 - I3*(b12+bi3+f13) = 0
~ I3*f13 + C4*fi4 + I5*b14 - I4*(b13+bi4+f14) = 0
~ I4*f14 + C5*fi5 + I6*b1n - I5*(b14+bi5+f1n) = 0
~ C1 + C2 + C3 + C4 + C5 + O + B + I1 + I2 + I3 + I4 + I5 + I6 = 1
}
PROCEDURE rates(v(mV) )
{
alfac = (Oon/Con)^(1/4)
btfac = (Ooff/Coff)^(1/4)
f01 = 4 * alpha * exp(v/x1)
f02 = 3 * alpha * exp(v/x1)
f03 = 2 * alpha * exp(v/x1)
f04 = 1 * alpha * exp(v/x1)
f0O = gamma * exp(v/x3)
fip = epsilon * exp(v/x5)
f11 = 4 * alpha * alfac * exp(v/x1)
f12 = 3 * alpha * alfac * exp(v/x1)
f13 = 2 * alpha * alfac * exp(v/x1)
f14 = 1 * alpha * alfac * exp(v/x1)
f1n = gamma * exp(v/x3)
fi1 = Con
fi2 = Con * alfac
fi3 = Con * alfac^2
fi4 = Con * alfac^3
fi5 = Con * alfac^4
fin = Oon
b01 = 1 * beta * exp(v/x2)
b02 = 2 * beta * exp(v/x2)
b03 = 3 * beta * exp(v/x2)
b04 = 4 * beta * exp(v/x2)
b0O = delta * exp(v/x4)
bip = zeta * exp(v/x6)
b11 = 1 * beta * btfac * exp(v/x2)
b12 = 2 * beta * btfac * exp(v/x2)
b13 = 3 * beta * btfac * exp(v/x2)
b14 = 4 * beta * btfac * exp(v/x2)
b1n = delta * exp(v/x4)
bi1 = Coff
bi2 = Coff * btfac
bi3 = Coff * btfac^2
bi4 = Coff * btfac^3
bi5 = Coff * btfac^4
bin = Ooff
}