-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpurkinje_bignet21.f
1787 lines (1523 loc) · 60.2 KB
/
purkinje_bignet21.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
c 26 March 2007, network version of /purkinje_parallel/purkinje.f, to run on multiple nodes
! 21 March 2007, version of purkinje.f to run on a node.
c 13 March 2007, begin construction of Purkinje cell model, starting with bask.f
c Sources include Llinas & Sugimori; Roth & Hausser for cell structure and passive
c parameters; de Schutter & Bower & Miyasho et al. for many of the active properties;
c Roth & Hausser for anomalous rectifier; Martina et al for data on delayed rectifier.
c 1 soma cylinder (level 1), 24 smooth dendritic compartments, #2 - 25.
c compartments 2 & 3 are dendritic shaft (level 2), 4 - 25 rest of smooth dendrites (level 3.
c There are 44 "canonical treelets" for the spiny dendrites; 2 treelets attach to
c each of the level 3 smooth dendritic compartments.
c A spiny treelet has 12 compartments: 4 along the main root, then 4 in each of 2 symmetrical
c branches. The spiny dendrites are compartments 26 - 553.
c Axon has 6 10-micron compartments, #554 - 559, level 0.
c Active conductances: gnaf (m cubed h) - axon will use shifted version.
c gnap (m cubed)
c gcaP (m) P channels
c gcaT (m h) T channels
c gcaR (m h) R channels
c gar (m) anomolous rectifier
c gKDR (m fourth) delayed rectifier, leaving out inactivation
c gKM (m) M current, also called persistent K
c gKA (m fourth x h) A current
c gKD (m h) D current
c gKC - try my original structure
c gKAHP - try my original structure.
c 12 Active conductances in all
PROGRAM PURKINJE_NET
PARAMETER (num_purk = 1000, np = 1000, ! i.e. = num_purk
x numnodes = 50)
integer, parameter :: cellspernode = 20
integer, parameter :: totaxgj = 2500
c integer, parameter :: num_axgjcompallow = 1
integer, parameter :: num_axgjcompallow = 3
double precision, parameter :: gapcon = 6.0d-3
c double precision, parameter :: gapcon = 5.5d-3
c double precision, parameter :: gapcon = 0.0d-3
double precision, parameter :: noisepe = 0.8d0/75.d0 ! 0.8 ms ~= 1333 dt
double precision gj_axon554 (cellspernode), gj_axon554_global(np) ! these used by mpi
double precision gj_axon555 (cellspernode), gj_axon555_global(np) ! these used by mpi
double precision gj_axon556 (cellspernode), gj_axon556_global(np) ! these used by mpi
double precision gj_axon557 (cellspernode), gj_axon557_global(np) ! these used by mpi
double precision gj_axon558 (cellspernode), gj_axon558_global(np) ! these used by mpi
double precision gj_axon559 (cellspernode), gj_axon559_global(np) ! these used by mpi
double precision soma_local (cellspernode), soma_global(np) ! these used by mpi
integer na, nb, display, ectr /0/
integer gjtable (totaxgj,4)
c integer table_axgjcompallow (num_axgjcompallow) /558/
integer table_axgjcompallow (num_axgjcompallow)
c x /555,556,557,558,559/ ! IF THIS IS ALTERED, MPI CODE MUST BE ALTERED AS WELL.
x /554,555,556 / ! IF THIS IS ALTERED, MPI CODE MUST BE ALTERED AS WELL.
INTEGER J1, I, J, K, L, O, ISEED, K1, thisno
REAL*8 TIMTOT, Z, Z1, Z2, Z3, curr(559,np), c(559), DT
REAL*8 TIMER, gettime, time1, time2, time
real*8 ranvec(np), seed /137.d0/
c CINV is 1/C, i.e. inverse capacitance
real*8 v(559,np), chi(559,np), cinv(559), gL(559),
x gNaF(559), gNaP(559), gCaP(559), gCaT(559), gCaR(559),
x gar(559), gKDR(559), gKM(559), gKA(559), gKD(559),
x gKC(559), gKAHP(559)
real*8 jacob(559,559), betchi(559), gam(0:559,0:559)
real*8
x mnaf(559,np), hnaf(559,np),
x mnap(559,np),
x mcap(559,np),
x mcat(559,np), hcat(559,np),
x mcar(559,np), hcar(559,np),
x mar (559,np),
x mkdr(559,np),
x mkm(559,np),
x mka(559,np), hka(559,np),
x mkd(559,np), hkd(559,np),
x mkc(559,np),
x mkahp(559,np)
real*8 gampa(559,np),gnmda(559,np),ggaba_a(559,np)
real*8 kdr_shift, cafor(59)
real*8
X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640),
X dbetam_naf(0:640),
X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640),
X dbetah_naf(0:640),
X alpham_nap(0:640),betam_nap(0:640),dalpham_nap(0:640),
X dbetam_nap(0:640),
X alpham_cap(0:640),betam_cap(0:640),dalpham_cap(0:640),
X dbetam_cap(0:640),
X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640),
X dbetam_cat(0:640),
X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640),
X dbetah_cat(0:640),
X alpham_car(0:640),betam_car(0:640),dalpham_car(0:640),
X dbetam_car(0:640),
X alphah_car(0:640),betah_car(0:640),dalphah_car(0:640),
X dbetah_car(0:640),
X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640),
X dbetam_ar(0:640),
X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640),
X dbetam_kdr(0:640),
X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640),
X dbetam_km(0:640),
X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) ,
X dbetam_ka(0:640),
X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640),
X dbetah_ka(0:640),
X alpham_kd(0:640), betam_kd(0:640),dalpham_kd(0:640) ,
X dbetam_kd(0:640),
X alphah_kd(0:640), betah_kd(0:640), dalphah_kd(0:640),
X dbetah_kd(0:640),
X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640),
X dbetam_kc(0:640)
real*8 vL,vk,vna,var,vca,vgaba_a
INTEGER NEIGH(559,6), NNUM(559)
c START EXECUTION PHASE
include 'mpif.h'
call mpi_init (info)
call mpi_comm_rank(mpi_comm_world, thisno, info)
call mpi_comm_size(mpi_comm_world, nodes , info)
time1 = gettime()
time1 = gettime()
na = thisno * cellspernode + 1
nb = na + cellspernode - 1 ! define which cells to be integrated on this node
c kdr_shift = 7.d0
kdr_shift = 10.d0
CALL PURKINJE_SETUP
X (alpham_naf, betam_naf, dalpham_naf, dbetam_naf,
X alphah_naf, betah_naf, dalphah_naf, dbetah_naf,
X alpham_nap, betam_nap, dalpham_nap, dbetam_nap,
X alpham_cap, betam_cap, dalpham_cap, dbetam_cap,
X alpham_cat, betam_cat, dalpham_cat, dbetam_cat,
X alphah_cat, betah_cat, dalphah_cat, dbetah_cat,
X alpham_car, betam_car, dalpham_car, dbetam_car,
X alphah_car, betah_car, dalphah_car, dbetah_car,
X alpham_ar , betam_ar , dalpham_ar , dbetam_ar,
X kdr_shift,
X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr,
X alpham_km , betam_km , dalpham_km , dbetam_km ,
X alpham_ka , betam_ka , dalpham_ka , dbetam_ka ,
X alphah_ka , betah_ka , dalphah_ka , dbetah_ka ,
X alpham_kd , betam_kd , dalpham_kd , dbetam_kd ,
X alphah_kd , betah_kd , dalphah_kd , dbetah_kd ,
X alpham_kc , betam_kc , dalpham_kc , dbetam_kc)
CALL PURKINJE_MAJ (GL,GAM,
X gNaF, gNaP, gCaP, gCaT, gCaR, gar, gKDR,
X gKM, gKA, gKD, gKC, gKAHP,
X CAFOR,JACOB,C,BETCHI,NEIGH,NNUM,thisno)
do i = 1, 559
cinv(i) = 1.d0 / c(i)
end do
c gnaf = 0.d0
c gnap = 0.d0
c gkdr = 0.d0
c gka = 0.d0
gkd = 0.d0
c gkm = 0.d0
gkc = 0.d0
gkahp = 0.d0
gcat = 0.d0
gcaP = 0.d0
gcaR = 0.d0
c gar = 0.d0
c Below introduces somatic shunt
c gL(1) = 100.d0 * gL(1)
gL(1) = 5.d0 * gL(1)
c below 4 statements disconnect axon from soma.
c gam(1,554) = 0.d0
c gam(554,1) = 0.d0
c jacob(1,554) = 0.d0
c jacob(554,1) = 0.d0
MG = 1.0d0
C IN MILLIMOLAR
VL = -80.d0
VK = - 85.d0
VNA = 45.d0
VCA = 135.d0
VAR = -30.d0
VGABA_A = -75.d0
DT = .00060d0
c DT = .00200d0
TIMTOT = 175.00d0
c TIMTOT = 8.d0 * dt
c timtot = 0.d0
c ? initialize membrane state variables?
c v = VL
v = -55.d0
k1 = idnint (4.d0 * (v(1,na) + 120.d0))
hnaf = alphah_naf(k1)/(alphah_naf(k1)+betah_naf(k1))
hka = alphah_ka(k1)/(alphah_ka(k1)+betah_ka(k1))
hkd = alphah_kd(k1)/(alphah_kd(k1)+betah_kd(k1))
hcat=alphah_cat(k1)/(alphah_cat(k1)+betah_cat(k1))
hcar=alphah_car(k1)/(alphah_car(k1)+betah_car(k1))
call purkinje_gapbld (thisno, np, totaxgj, gjtable,
X table_axgjcompallow, num_axgjcompallow, 1)
c Define tonic currents
call durand (seed, np, ranvec)
do L = 1, np
curr(1,L) = 0.35d0 + 0.10d0 * ranvec(L) ! for soma
end do
c Hyperpolarize one or more cells, to try to unmask spikelets
curr(1,21) = -0.25d0
curr(1,22) = -0.25d0
curr(1,23) = -0.25d0
curr(1,24) = -0.25d0
curr(1,25) = -0.25d0
curr(1,26) = -0.25d0
curr(1,27) = -0.25d0
curr(1,28) = -0.25d0
do L = 1, np
do i = 554, 559
curr(i,L) = 0.04d0
end do
end do
O = 0
TIME = 0.d0
TIMER = 0.d0 ! for periodic spikes
2000 TIME = TIME + DT
O = O + 1
IF (TIME .GT. TIMTOT) GO TO 2001
c if (mod(O,8000).eq.0) timer = timer + 4.8d0
c curr(1) = 1.50d0
c curr(1) = 0.75d0
c IF (MOD(O,100).EQ. 0 ) THEN
c IF ( i.eq.i ) THEN
c WRITE (6,904) TIME, v(1), v(14), chi(14),
c X V(25), v(554), v(557), v(558), v(559), curr(559)
c X ,curr(14)
c ENDIF
904 FORMAT(2X,F8.3,2X,8f8.2,f8.4,f9.4)
c Set up currents for ectopic spikes. Note the "quantization" of time introduced this way
if (mod(O,1333).eq.0) then
call durand (seed,np,ranvec)
do L = na, nb
if ((ranvec(L).gt.0.d0).and.(ranvec(L).le.noisepe)) then
curr(559,L) = 0.45d0
ectr = ectr + 1
else
curr(559,L) = 0.d0
endif
end do
end if
CALL PURKINJE_INT_NET (V,CHI,CINV,
X mnaf,hnaf,mnap,mcap,mcat,hcat,mcar,hcar,mar,
x mkdr,mkm,mka,hka,mkd,hkd,mkc,mkahp,
x dt,neigh,nnum,jacob,mg,
x vL,vk,vna,var,vca,vgaba_a,betchi,gam,gL,
x gnaf,gnap,gcaP,gcaT,gCaR,gar,
x gKDR,gKM,gKA,gKD,gKC,gKAHP,
x gampa,gnmda,ggaba_a,
x O,time,
X alpham_naf, betam_naf, dalpham_naf, dbetam_naf,
X alphah_naf, betah_naf, dalphah_naf, dbetah_naf,
X alpham_nap, betam_nap, dalpham_nap, dbetam_nap,
X alpham_cap, betam_cap, dalpham_cap, dbetam_cap,
X alpham_cat, betam_cat, dalpham_cat, dbetam_cat,
X alphah_cat, betah_cat, dalphah_cat, dbetah_cat,
X alpham_car, betam_car, dalpham_car, dbetam_car,
X alphah_car, betah_car, dalphah_car, dbetah_car,
X alpham_ar , betam_ar , dalpham_ar , dbetam_ar,
X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr,
X alpham_km , betam_km , dalpham_km , dbetam_km ,
X alpham_ka , betam_ka , dalpham_ka , dbetam_ka ,
X alphah_ka , betah_ka , dalphah_ka , dbetah_ka ,
X alpham_kd , betam_kd , dalpham_kd , dbetam_kd ,
X alphah_kd , betah_kd , dalphah_kd , dbetah_kd ,
X alpham_kc , betam_kc , dalpham_kc , dbetam_kc ,
X cafor,curr,
X np, initialize, na, nb, thisno, ! np = num_purk, but use shorter name here
X gapcon, totaxgj, gjtable)
c data broadcasting, followed by reading appropriate axonal voltages into locally known voltage array
if (mod(O,5).eq.0) then
! CODE BELOW SHARES ALL AXONAL COMPARTMENTS EXCEPT HILLOCK, AND SOMA.
k = 554
do L = na, nb
gj_axon554 (L - na + 1) = v(k,L)
end do
call mpi_allgather (gj_axon554,
x cellspernode, mpi_double_precision,
x gj_axon554_global, cellspernode, mpi_double_precision,
x mpi_comm_world, info)
do L = 1, np
v(k,L) = gj_axon554_global(L)
end do
c k = table_axgjcompallow(1)
k = 555
do L = na, nb
gj_axon555 (L - na + 1) = v(k,L)
end do
call mpi_allgather (gj_axon555,
x cellspernode, mpi_double_precision,
x gj_axon555_global, cellspernode, mpi_double_precision,
x mpi_comm_world, info)
do L = 1, np
v(k,L) = gj_axon555_global(L)
end do
c k = table_axgjcompallow(2)
k = 556
do L = na, nb
gj_axon556 (L - na + 1) = v(k,L)
end do
call mpi_allgather (gj_axon556,
x cellspernode, mpi_double_precision,
x gj_axon556_global, cellspernode, mpi_double_precision,
x mpi_comm_world, info)
do L = 1, np
v(k,L) = gj_axon556_global(L)
end do
c k = table_axgjcompallow(3)
k = 557
do L = na, nb
gj_axon557 (L - na + 1) = v(k,L)
end do
call mpi_allgather (gj_axon557,
x cellspernode, mpi_double_precision,
x gj_axon557_global, cellspernode, mpi_double_precision,
x mpi_comm_world, info)
do L = 1, np
v(k,L) = gj_axon557_global(L)
end do
c k = table_axgjcompallow(4)
k = 558
do L = na, nb
gj_axon558 (L - na + 1) = v(k,L)
end do
call mpi_allgather (gj_axon558,
x cellspernode, mpi_double_precision,
x gj_axon558_global, cellspernode, mpi_double_precision,
x mpi_comm_world, info)
do L = 1, np
v(k,L) = gj_axon558_global(L)
end do
c k = table_axgjcompallow(5)
k = 559
do L = na, nb
gj_axon559 (L - na + 1) = v(k,L)
end do
call mpi_allgather (gj_axon559,
x cellspernode, mpi_double_precision,
x gj_axon559_global, cellspernode, mpi_double_precision,
x mpi_comm_world, info)
do L = 1, np
v(k,L) = gj_axon559_global(L)
end do
do L = na, nb
soma_local (L - na + 1) = v(1,L)
end do
call mpi_allgather (soma_local,
x cellspernode, mpi_double_precision,
x soma_global, cellspernode, mpi_double_precision,
x mpi_comm_world, info)
do L = 1, np
v(1,L) = soma_global(L)
end do
endif
GO TO 2000
2001 CONTINUE
if (thisno.eq.0) then
write(6,897) ectr
897 format(i8,' axonal pulses on node 0')
time2 = gettime()
write(6,309) time2 - time1
309 format(' Elapsed time = ',f8.0,' secs')
endif
1000 CONTINUE
call mpi_finalize(info)
END
C SETS UP TABLES FOR RATE FUNCTIONS
SUBROUTINE PURKINJE_SETUP
X (alpham_naf, betam_naf, dalpham_naf, dbetam_naf,
X alphah_naf, betah_naf, dalphah_naf, dbetah_naf,
X alpham_nap, betam_nap, dalpham_nap, dbetam_nap,
X alpham_cap, betam_cap, dalpham_cap, dbetam_cap,
X alpham_cat, betam_cat, dalpham_cat, dbetam_cat,
X alphah_cat, betah_cat, dalphah_cat, dbetah_cat,
X alpham_car, betam_car, dalpham_car, dbetam_car,
X alphah_car, betah_car, dalphah_car, dbetah_car,
X alpham_ar , betam_ar , dalpham_ar , dbetam_ar,
X kdr_shift,
X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr,
X alpham_km , betam_km , dalpham_km , dbetam_km ,
X alpham_ka , betam_ka , dalpham_ka , dbetam_ka ,
X alphah_ka , betah_ka , dalphah_ka , dbetah_ka ,
X alpham_kd , betam_kd , dalpham_kd , dbetam_kd ,
X alphah_kd , betah_kd , dalphah_kd , dbetah_kd ,
X alpham_kc , betam_kc , dalpham_kc , dbetam_kc)
INTEGER I,J,K
real*8 minf, hinf, taum, tauh, V, Z,
X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640),
X dbetam_naf(0:640),
X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640),
X dbetah_naf(0:640),
X alpham_nap(0:640),betam_nap(0:640),dalpham_nap(0:640),
X dbetam_nap(0:640),
X alpham_caP(0:640),betam_caP(0:640),dalpham_caP(0:640),
X dbetam_caP(0:640),
X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640),
X dbetam_cat(0:640),
X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640),
X dbetah_cat(0:640),
X alpham_car(0:640),betam_car(0:640),dalpham_car(0:640),
X dbetam_car(0:640),
X alphah_car(0:640),betah_car(0:640),dalphah_car(0:640),
X dbetah_car(0:640),
X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640),
X dbetam_ar(0:640),
X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640),
X dbetam_kdr(0:640),
X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640),
X dbetam_km(0:640),
X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) ,
X dbetam_ka(0:640),
X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640),
X dbetah_ka(0:640),
X alpham_kd(0:640), betam_kd(0:640),dalpham_kd(0:640) ,
X dbetam_kd(0:640),
X alphah_kd(0:640), betah_kd(0:640), dalphah_kd(0:640),
X dbetah_kd(0:640),
X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640),
X dbetam_kc(0:640)
real*8 kdr_shift
C FOR VOLTAGE, RANGE IS -120 TO +40 MV (absol.), 0.25 MV RESOLUTION
DO 1, I = 0, 640
V = dble (I)
V = (V / 4.d0) - 120.d0
c gNaF
c T. Miyasho et al. 2001
alpham_naf(i) = 35.d0 / (0.d0 + dexp((v + 5.d0)/(-10.d0)))
betam_naf(i) = 7.d0 / (0.d0 + dexp((v+65.d0)/20.d0))
c T. Miyasho et al. 2001
alphah_naf(i) = 0.225d0 / (1.d0 + dexp((v+80.d0)/10.d0))
betah_naf(i) = 7.5d0 / (0.d0 + dexp((v-3.d0)/(-18.d0)))
c T. Miyasho et al. 2001
alpham_nap(i) = 200.d0 / (1.d0 + dexp((v-18.d0)/(-16.d0)))
betam_nap(i) = 25.d0 / (1.d0 + dexp((v+58.d0)/8.d0))
c P channels, T. Miyasho et al. 2001
alpham_cap(i) = 8.5d0 / (1.d0 + dexp((v-8.d0)/(-12.5d0)))
betam_cap(i) = 35.d0 / (1.d0 + dexp((v+74.d0)/14.5d0))
c T-current, from T. Miyasho et al., 2001
alpham_cat(i) = 2.6d0 / (1.d0 + dexp((v+21.d0)/(-8.d0)))
betam_cat(i) = 0.18d0 / (1.d0 + dexp((v+40.d0)/4.d0))
alphah_cat(i) = 0.0025d0 / (1.d0 + dexp((v+40.d0)/8.d0))
betah_cat(i) = 0.19d0 / (1.d0 + dexp((v+50.d0)/(-10.d0)))
c R-current, from T. Miyasho et al., 2001
alpham_car(i) = 2.6d0 / (1.d0 + dexp((v+7.d0)/(-8.d0)))
betam_car(i) = 0.18d0/ (1.d0 + dexp((v+26.d0)/4.d0))
alphah_car(i) = 0.0025/ (1.d0 + dexp((v+32.d0)/8.d0))
betah_car(i) = 0.19d0/ (1.d0 + dexp((v+42.d0)/(-10.d0)))
c h-current (anomalous rectifier), Roth and Hausser
alpham_ar(i) = 0.00063d0 * dexp (-0.063d0 * (v + 73.2d0))
betam_ar(i) = 0.00063d0 * dexp(0.079d0 * (v +73.2d0))
c delayed rectifier, non-inactivating. Start with mine (e.g. bask.f)
c Perhaps modify after comparison with Martina et al., 2003
v = v + kdr_shift
c minf = 1.d0/(1.d0+dexp((-v-27.d0)/11.5d0))
minf = 1.d0/(1.d0+dexp((-v-20.d0)/11.5d0)) ! elevate threshold
if (v.le.-10.d0) then
taum = .25d0 + 4.35d0*dexp((v+10.d0)/10.d0)
else
taum = .25d0 + 4.35d0*dexp((-v-10.d0)/10.d0)
endif
alpham_kdr(i) = minf / taum
betam_kdr(i) = 1.d0 /taum - alpham_kdr(i)
c from Martina, Schultz et al., 1998 - for bask.f
v = v - kdr_shift
c M-current, from plast.f, with 60 mV shift
alpham_km(i) = .02d0/(1.d0+dexp((-v-20.d0)/5.d0))
betam_km(i) = .01d0 * dexp((-v-43.d0)/18.d0)
c A current: T. Miyasho et al., 2001
alpham_ka(i) = 1.4d0 / (1.d0 + dexp((v+27.d0)/(-12.d0)))
betam_ka(i) = 0.49d0/ (1.d0 + dexp((v+30.d0)/4.d0))
alphah_ka(i) = 0.0175d0/(1.d0 + dexp((v+50.d0)/8.d0))
betah_ka(i) = 1.3 / (1.d0 + dexp((v+13.d0)/(-10.d0)))
c D current: T. Miyasho et al., 2001
alpham_kd(i) = 8.5d0 / (1.d0 + dexp((v+17.d0)/(-12.5d0)))
betam_kd(i) = 35.0d0/ (1.d0 + dexp((v+99.d0)/14.5d0))
alphah_kd(i) = 0.0015d0/(1.d0 + dexp((v+89.d0)/8.d0))
betah_kd(i) = 0.0055d0 / (1.d0 + dexp((v+83.d0)/(-8.d0)))
c voltage part of C-current, using 1994 kinetics, shift 60 mV
if (v.le.-10.d0) then
alpham_kc(i) = (2.d0/37.95d0)*dexp((v+50.d0)/11.d0 -
x (v+53.5)/27.d0)
betam_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0)-alpham_kc(i)
else
alpham_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0)
betam_kc(i) = 0.d0
endif
c Speed-up of C kinetics here.
alpham_kc(i) = 2.d0 * alpham_kc(i)
betam_kc(i) = 2.d0 * betam_kc(i)
1 CONTINUE
do 2, i = 0, 639
dalpham_naf(i) = (alpham_naf(i+1)-alpham_naf(i))/.25d0
dbetam_naf(i) = (betam_naf(i+1)-betam_naf(i))/.25d0
dalphah_naf(i) = (alphah_naf(i+1)-alphah_naf(i))/.25d0
dbetah_naf(i) = (betah_naf(i+1)-betah_naf(i))/.25d0
dalpham_nap(i) = (alpham_nap(i+1)-alpham_nap(i))/.25d0
dbetam_nap(i) = (betam_nap(i+1)-betam_nap(i))/.25d0
dalpham_cap(i) = (alpham_cap(i+1)-alpham_cap(i))/.25d0
dbetam_cap(i) = (betam_cap(i+1)-betam_cap(i))/.25d0
dalpham_cat(i) = (alpham_cat(i+1)-alpham_cat(i))/.25d0
dbetam_cat(i) = (betam_cat(i+1)-betam_cat(i))/.25d0
dalphah_cat(i) = (alphah_cat(i+1)-alphah_cat(i))/.25d0
dbetah_cat(i) = (betah_cat(i+1)-betah_cat(i))/.25d0
dalpham_car(i) = (alpham_car(i+1)-alpham_car(i))/.25d0
dbetam_car(i) = (betam_car(i+1)-betam_car(i))/.25d0
dalphah_car(i) = (alphah_car(i+1)-alphah_car(i))/.25d0
dbetah_car(i) = (betah_car(i+1)-betah_car(i))/.25d0
dalpham_ar(i) = (alpham_ar(i+1)-alpham_ar(i))/.25d0
dbetam_ar(i) = (betam_ar(i+1)-betam_ar(i))/.25d0
dalpham_kdr(i) = (alpham_kdr(i+1)-alpham_kdr(i))/.25d0
dbetam_kdr(i) = (betam_kdr(i+1)-betam_kdr(i))/.25d0
dalpham_km(i) = (alpham_km(i+1)-alpham_km(i))/.25d0
dbetam_km(i) = (betam_km(i+1)-betam_km(i))/.25d0
dalpham_ka(i) = (alpham_ka(i+1)-alpham_ka(i))/.25d0
dbetam_ka(i) = (betam_ka(i+1)-betam_ka(i))/.25d0
dalphah_ka(i) = (alphah_ka(i+1)-alphah_ka(i))/.25d0
dbetah_ka(i) = (betah_ka(i+1)-betah_ka(i))/.25d0
dalpham_kd(i) = (alpham_kd(i+1)-alpham_kd(i))/.25d0
dbetam_kd(i) = (betam_kd(i+1)-betam_kd(i))/.25d0
dalphah_kd(i) = (alphah_kd(i+1)-alphah_kd(i))/.25d0
dbetah_kd(i) = (betah_kd(i+1)-betah_kd(i))/.25d0
dalpham_kc(i) = (alpham_kc(i+1)-alpham_kc(i))/.25d0
dbetam_kc(i) = (betam_kc(i+1)-betam_kc(i))/.25d0
2 CONTINUE
END
SUBROUTINE PURKINJE_MAJ (GL,GAM,
X gNaF, gNaP, gCaP, gCaT, gCaR, gar, gKDR,
X gKM, gKA, gKD, gKC, gKAHP,
X CAFOR,JACOB,C,BETCHI,NEIGH,NNUM,thisno)
c Conductances: see main program.
c Note VAR = equil. potential for anomalous rectifier.
c 1 soma cylinder (level 1), 24 smooth dendritic compartments, #2 - 25.
c compartments 2 & 3 are dendritic shaft (level 2), 4 - 25 rest of smooth dendrites (level 3.
c There are 44 "canonical treelets" for the spiny dendrites; 2 treelets attach to
c each of the level 3 smooth dendritic compartments (22 of them).
c A spiny treelet has 12 compartments: 4 along the main root, then 4 in each of 2 symmetrical
c branches. The spiny dendrites are compartments 26 - 553, level 4.
c Axon has 6 5-micron compartments, #554 - 559, level 0.
c Drop "glc"-like terms, just using "gl"-like
c CAFOR corresponds to "phi" in Traub et al., 1994
c Consistent set of units: nF, mV, ms, nA, microS
REAL*8 C(559),GL(559),GAM(0:559,0:559)
REAL*8 gnaf(559), gnap(559), gcap(559), gcat(559), gcar(559)
REAL*8 gar(559), gKDR(559), gKM(559), gKA(559), gKD(559),
X gKC(559), gKAHP(559)
REAL*8 JACOB(559,559),RI_SD,RI_AXON,RM_SD,RM_AXON,CDENS
INTEGER LEVEL(559), thisno
REAL*8 GNAF_DENS(0:4), GNAP_DENS(0:4)
REAL*8 GCAP_DENS(0:4), GCAT_DENS(0:4), GCAR_DENS(0:4)
REAL*8 GAR_DENS(0:4)
REAL*8 GKDR_DENS(0:4), GKM_DENS(0:4), GKA_DENS(0:4)
REAL*8 GKD_DENS(0:4), GKC_DENS(0:4), GKAHP_DENS(0:4)
REAL*8 RES, RINPUT, z1, z2, z, somaar
REAL*8 RSOMA, PI, BETCHI(559), CAFOR(559)
REAL*8 RAD(559), LEN(559), GAM1, GAM2, ELEN(559)
REAL*8 RIN, D(559), AREA(559), RI
INTEGER NEIGH(559,6), NNUM(559)
C FOR ESTABLISHING TOPOLOGY OF COMPARTMENTS
RI_SD = 115.d0 ! Roth & Hausser
c RM_SD = 125000.d0 ! Roth & Hausser
c RM_SD = 100000.d0 ! close to Roth & Hausser
RM_SD = 50000.d0 ! close to Miyasho et al.
RI_AXON = 100.d0
c RM_AXON = 125000.d0 ! NOTE same as for SD
RM_AXON = 2000.d0
CDENS = 0.8d0 ! Roth & Hausser
PI = 3.14159d0
c See T. Miyasho et al., Brain Research 2001, for initial densities, but
c there will be changes. e.g. Ca spikes have voltage-dependent fast-repol.
c so I will make dendritic gKDR larger and gKC smaller.
c ALSO, since there is now axon with voltage-shifted gNaF activation, I will
c try much smaller gNaF somatic density (Miyasho et al. have 10,000 ohm-cm-sqd)
c gNaF
gnaf_dens(0) = 3500.d0
gnaf_dens(1) = 5000.d0
c gnaf_dens(1) = 7000.d0
gnaf_dens(2) = 10.d0
gnaf_dens(3) = 0.d0
gnaf_dens(4) = 0.d0
c gNaP
gnap_dens(0) = 0.1d0
gnap_dens(1) = 5.0d0
gnap_dens(2) = 1.0d0
gnap_dens(3) = 0.0d0
gnap_dens(4) = 0.d0
c gCaP
gcaP_dens(0) = 0.0d0
gcaP_dens(1) = 0.0d0
gcaP_dens(2) = 0.0d0
gcaP_dens(3) = 5.0d0
gcaP_dens(4) = 5.0d0
c gCaT
gcaT_dens(0) = 0.0d0
gcaT_dens(1) = 0.0d0
gcaT_dens(2) = 0.5d0
gcaT_dens(3) = 1.5d0
gcaT_dens(4) = 1.5d0
c gCaR
gcaR_dens(0) = 0.0d0
gcaR_dens(1) = 0.0d0
gcaR_dens(2) = 0.0d0
gcaR_dens(3) = 8.0d0
gcaR_dens(4) = 8.0d0
c gar - Miyasho only have Ih at soma, but many princ cells have dendritic Ih
gar_dens(0) = 0.0d0
gar_dens(1) = 0.005d0
gar_dens(2) = 0.005d0
gar_dens(3) = 0.005d0
gar_dens(4) = 0.005d0
c gKDR
c gKDR_dens(0) = 3500.0d0
gKDR_dens(0) = 1000.0d0
c gKDR_dens(1) = 7000.0d0
gKDR_dens(1) = 1000.0d0
gKDR_dens(2) = 0.5d0
gKDR_dens(3) = 0.5d0
gKDR_dens(4) = 0.5d0
c gKM
gKM_dens(0) = 1.00d0
gKM_dens(1) = 1.00d0
gKM_dens(2) = 1.00d0
gKM_dens(3) = 0.04d0
gKM_dens(4) = 0.04d0
c gKA
gKA_dens(0) = 1.0d0
gKA_dens(1) = 15.0d0
gKA_dens(2) = 80.0d0
gKA_dens(3) = 80.0d0
gKA_dens(4) = 80.0d0
c gKD
gKD_dens(0) = 0.0d0
gKD_dens(1) = 0.0d0
gKD_dens(2) = 80.0d0
gKD_dens(3) = 80.0d0
c gKD_dens(3) = 200.0d0
gKD_dens(4) = 80.0d0
c gKD_dens(4) = 200.0d0
c gKC
gKC_dens(0) = 0.0d0
gKC_dens(1) = 0.0d0
gKC_dens(2) = 25.0d0
gKC_dens(3) = 25.0d0
gKC_dens(4) = 25.0d0
c gKAHP
gkahp_dens(0) = 0.d0
gkahp_dens(1) = 0.d0
gkahp_dens(2) = 0.d0
gkahp_dens(3) = 1.60d0
gkahp_dens(4) = 1.60d0
if (thisno.eq.0) then
WRITE (6,9988)
9988 FORMAT(2X,'I',4X,'NADENS',' CADENS(P)',' KDRDEN',' KAHPDE',
X ' KCDENS',' KADENS')
DO 9989, I = 0, 4
WRITE (6,9990) I, gnaf_dens(i), gcaR_dens(i), gkdr_dens(i),
X gkahp_dens(i), gkc_dens(i), gka_dens(i)
9990 FORMAT(2X,I2,2X,F7.2,1X,F6.2,1X,F7.2,1X,F6.2,1X,F6.2,1X,F6.2)
9989 CONTINUE
endif
level(1) = 1
level(2) = 2
level(3) = 2
do i = 4, 25
level(i) = 3
end do
do i = 26, 553
level(i) = 4
end do
do i = 554, 559
level(i) = 0
end do
c connectivity of axon
nnum(554) = 2
nnum(555) = 2
nnum(556) = 2
nnum(557) = 2
nnum(558) = 2
nnum(559) = 1
neigh(554,1) = 1
neigh(554,2) = 555
neigh(555,1) = 554
neigh(555,2) = 556
neigh(556,1) = 555
neigh(556,2) = 557
neigh(557,1) = 556
neigh(557,2) = 558
neigh(558,1) = 557
neigh(558,2) = 559
neigh(559,1) = 558
c connectivity of SD part
nnum(1) = 2 ! SOMA
neigh(1,1) = 554
neigh(1,2) = 2
c Now proximal smooth dendrite: no spiny treelets attached
nnum(2) = 2
neigh(2,1) = 1
neigh(2,2) = 3
nnum(3) = 3
neigh(3,1) = 2
neigh(3,2) = 4
neigh(3,3) = 5
c Now distal smooth dendrite (level 3): 2 spiny treelets to each
nnum(4) = 6
neigh(4,1) = 3
neigh(4,2) = 5
neigh(4,3) = 12
neigh(4,4) = 18
neigh(4,5) = 26 ! base of spiny treelet
neigh(4,6) = 38 ! base of spiny treelet
nnum(5) = 5
neigh(5,1) = 3
neigh(5,2) = 4
neigh(5,3) = 6
neigh(5,4) = 50 ! base of spiny treelet
neigh(5,5) = 62 ! base of spiny treelet
nnum(6) = 4
neigh(6,1) = 5
neigh(6,2) = 7
neigh(6,3) = 74
neigh(6,4) = 86
nnum(7) = 4
neigh(7,1) = 6
neigh(7,2) = 8
neigh(7,3) = 98
neigh(7,4) = 110
nnum(8) = 4
neigh(8,1) = 7
neigh(8,2) = 9
neigh(8,3) = 122
neigh(8,4) = 134
nnum(9) = 4
neigh(9,1) = 8
neigh(9,2) = 10
neigh(9,3) = 146
neigh(9,4) = 158
nnum(10) = 4
neigh(10,1) = 9
neigh(10,2) = 11
neigh(10,3) = 170
neigh(10,4) = 182
nnum(11) = 3
neigh(11,1) = 10
neigh(11,2) = 194
neigh(11,3) = 206
nnum(12) = 5
neigh(12,1) = 4
neigh(12,2) = 18
neigh(12,3) = 13
neigh(12,4) = 218
neigh(12,5) = 230
nnum(13) = 4
neigh(13,1) = 12
neigh(13,2) = 14
neigh(13,3) = 242
neigh(13,4) = 254
nnum(14) = 4
neigh(14,1) = 13
neigh(14,2) = 15
neigh(14,3) = 266
neigh(14,4) = 278
nnum(15) = 4
neigh(15,1) = 14
neigh(15,2) = 16
neigh(15,3) = 290
neigh(15,4) = 302
nnum(16) = 4
neigh(16,1) = 15
neigh(16,2) = 17
neigh(16,3) = 314
neigh(16,4) = 326
nnum(17) = 3
neigh(17,1) = 16
neigh(17,2) = 338
neigh(17,3) = 350
nnum(18) = 5
neigh(18,1) = 4
neigh(18,2) = 12
neigh(18,3) = 19
neigh(18,4) = 362
neigh(18,5) = 374
nnum(19) = 4
neigh(19,1) = 18
neigh(19,2) = 20
neigh(19,3) = 386
neigh(19,4) = 398
nnum(20) = 4
neigh(20,1) = 19
neigh(20,2) = 21
neigh(20,3) = 410
neigh(20,4) = 422
nnum(21) = 4
neigh(21,1) = 20
neigh(21,2) = 22
neigh(21,3) = 434
neigh(21,4) = 446
nnum(22) = 4
neigh(22,1) = 21
neigh(22,2) = 23
neigh(22,3) = 458
neigh(22,4) = 470
nnum(23) = 4
neigh(23,1) = 22
neigh(23,2) = 24
neigh(23,3) = 482
neigh(23,4) = 494
nnum(24) = 4
neigh(24,1) = 23
neigh(24,2) = 25
neigh(24,3) = 506
neigh(24,4) = 518
nnum(25) = 3
neigh(25,1) = 24
neigh(25,2) = 530
neigh(25,3) = 542
c Attachments of bases of treelets: one side to a smooth compartment, the other to next more distal part of treelet
do i = 26, 530, 24
nnum(i) = 2
neigh(i,1) = (i - 26)/24 + 4
neigh(i,2) = i + 1
end do
do i = 38, 542, 24
nnum(i) = 2
neigh(i,1) = (i - 38)/24 + 4
neigh(i,2) = i + 1
end do
c Now connect up the rest of the treelets
do i = 27, 543, 12
nnum(i) = 2
neigh(i,1) = i-1
neigh(i,2) = i+1
end do
do i = 28, 544, 12
nnum(i) = 2
neigh(i,1) = i-1
neigh(i,2) = i+1
end do
do i = 29, 545, 12
nnum(i) = 3
neigh(i,1) = i-1
neigh(i,2) = i+1
neigh(i,3) = i+5