|
| 1 | + |
| 2 | + |
| 3 | +from __future__ import print_function |
| 4 | +# MODELCHIMP tracker |
| 5 | +from modelchimp import Tracker |
| 6 | + |
| 7 | +import argparse |
| 8 | +import torch |
| 9 | +import torch.nn as nn |
| 10 | +import torch.nn.functional as F |
| 11 | +import torch.optim as optim |
| 12 | +from torchvision import datasets, transforms |
| 13 | + |
| 14 | +class Net(nn.Module): |
| 15 | + def __init__(self): |
| 16 | + super(Net, self).__init__() |
| 17 | + self.conv1 = nn.Conv2d(1, 10, kernel_size=5) |
| 18 | + self.conv2 = nn.Conv2d(10, 20, kernel_size=5) |
| 19 | + self.conv2_drop = nn.Dropout2d() |
| 20 | + self.fc1 = nn.Linear(320, 50) |
| 21 | + self.fc2 = nn.Linear(50, 10) |
| 22 | + |
| 23 | + def forward(self, x): |
| 24 | + x = F.relu(F.max_pool2d(self.conv1(x), 2)) |
| 25 | + x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) |
| 26 | + x = x.view(-1, 320) |
| 27 | + x = F.relu(self.fc1(x)) |
| 28 | + x = F.dropout(x, training=self.training) |
| 29 | + x = self.fc2(x) |
| 30 | + return F.log_softmax(x, dim=1) |
| 31 | + |
| 32 | +def train(args, model, device, train_loader, optimizer, epoch): |
| 33 | + model.train() |
| 34 | + train_loss = 0 |
| 35 | + correct = 0 |
| 36 | + |
| 37 | + for batch_idx, (data, target) in enumerate(train_loader): |
| 38 | + data, target = data.to(device), target.to(device) |
| 39 | + optimizer.zero_grad() |
| 40 | + output = model(data) |
| 41 | + loss = F.nll_loss(output, target) |
| 42 | + train_loss += F.nll_loss(output, target, reduction='sum').item() |
| 43 | + loss.backward() |
| 44 | + optimizer.step() |
| 45 | + if batch_idx % args.log_interval == 0: |
| 46 | + print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( |
| 47 | + epoch, batch_idx * len(data), len(train_loader.dataset), |
| 48 | + 100. * batch_idx / len(train_loader), loss.item())) |
| 49 | + pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability |
| 50 | + correct += pred.eq(target.view_as(pred)).sum().item() |
| 51 | + |
| 52 | + train_loss /= len(train_loader.dataset) |
| 53 | + accuracy = correct / len(train_loader.dataset) |
| 54 | + |
| 55 | + return { |
| 56 | + 'train_loss': train_loss, |
| 57 | + 'train_accuracy': accuracy |
| 58 | + } |
| 59 | + |
| 60 | + |
| 61 | +def test(args, model, device, test_loader): |
| 62 | + model.eval() |
| 63 | + test_loss = 0 |
| 64 | + correct = 0 |
| 65 | + with torch.no_grad(): |
| 66 | + for data, target in test_loader: |
| 67 | + data, target = data.to(device), target.to(device) |
| 68 | + output = model(data) |
| 69 | + test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss |
| 70 | + pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability |
| 71 | + correct += pred.eq(target.view_as(pred)).sum().item() |
| 72 | + |
| 73 | + test_loss /= len(test_loader.dataset) |
| 74 | + accuracy = correct / len(test_loader.dataset) |
| 75 | + |
| 76 | + print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( |
| 77 | + test_loss, correct, len(test_loader.dataset), |
| 78 | + 100. * correct / len(test_loader.dataset))) |
| 79 | + |
| 80 | + return { |
| 81 | + 'test_loss': test_loss, |
| 82 | + 'test_accuracy': accuracy |
| 83 | + } |
| 84 | + |
| 85 | +def main(): |
| 86 | + # Training settings |
| 87 | + parser = argparse.ArgumentParser(description='PyTorch MNIST Example') |
| 88 | + parser.add_argument('--batch-size', type=int, default=64, metavar='N', |
| 89 | + help='input batch size for training (default: 64)') |
| 90 | + parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', |
| 91 | + help='input batch size for testing (default: 1000)') |
| 92 | + parser.add_argument('--epochs', type=int, default=10, metavar='N', |
| 93 | + help='number of epochs to train (default: 10)') |
| 94 | + parser.add_argument('--lr', type=float, default=0.01, metavar='LR', |
| 95 | + help='learning rate (default: 0.01)') |
| 96 | + parser.add_argument('--momentum', type=float, default=0.5, metavar='M', |
| 97 | + help='SGD momentum (default: 0.5)') |
| 98 | + parser.add_argument('--no-cuda', action='store_true', default=False, |
| 99 | + help='disables CUDA training') |
| 100 | + parser.add_argument('--seed', type=int, default=1, metavar='S', |
| 101 | + help='random seed (default: 1)') |
| 102 | + parser.add_argument('--log-interval', type=int, default=10, metavar='N', |
| 103 | + help='how many batches to wait before logging training status') |
| 104 | + args = parser.parse_args() |
| 105 | + use_cuda = not args.no_cuda and torch.cuda.is_available() |
| 106 | + param = args.__dict__ |
| 107 | + |
| 108 | + torch.manual_seed(args.seed) |
| 109 | + |
| 110 | + # MODELCHIMP Tracker |
| 111 | + tracker = Tracker('<PROJECT KEY>', host='demo.modelchimp.com', experiment_name='MNIST Classification') |
| 112 | + tracker.add_multiple_params(param) |
| 113 | + |
| 114 | + device = torch.device("cuda" if use_cuda else "cpu") |
| 115 | + |
| 116 | + kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} |
| 117 | + train_loader = torch.utils.data.DataLoader( |
| 118 | + datasets.MNIST('../data', train=True, download=True, |
| 119 | + transform=transforms.Compose([ |
| 120 | + transforms.ToTensor(), |
| 121 | + transforms.Normalize((0.1307,), (0.3081,)) |
| 122 | + ])), |
| 123 | + batch_size=args.batch_size, shuffle=True, **kwargs) |
| 124 | + test_loader = torch.utils.data.DataLoader( |
| 125 | + datasets.MNIST('../data', train=False, transform=transforms.Compose([ |
| 126 | + transforms.ToTensor(), |
| 127 | + transforms.Normalize((0.1307,), (0.3081,)) |
| 128 | + ])), |
| 129 | + batch_size=args.test_batch_size, shuffle=True, **kwargs) |
| 130 | + |
| 131 | + |
| 132 | + model = Net().to(device) |
| 133 | + optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) |
| 134 | + |
| 135 | + for epoch in range(1, args.epochs + 1): |
| 136 | + train_metric = train(args, model, device, train_loader, optimizer, epoch) |
| 137 | + test_metric = test(args, model, device, test_loader) |
| 138 | + |
| 139 | + # MODELCHIMP Tracker |
| 140 | + tracker.add_multiple_metrics(train_metric, epoch=epoch) |
| 141 | + tracker.add_multiple_metrics(test_metric, epoch=epoch) |
| 142 | + |
| 143 | + |
| 144 | +if __name__ == '__main__': |
| 145 | + main() |
0 commit comments