SymbolicRegression.jl searches for symbolic expressions which optimize a particular objective.
sr_animation.mp4
Latest release | Documentation | Forums | Paper |
---|---|---|---|
Build status | Coverage |
---|---|
Check out PySR for a Python frontend. Cite this software
Mark Kittisopikul 💻 💡 🚇 📦 📣 👀 🔧 |
T Coxon 🐛 💻 🔌 💡 🚇 🚧 👀 🔧 |
Dhananjay Ashok 💻 🌍 💡 🚧 |
Johan Blåbäck 🐛 💻 💡 🚧 📣 👀 |
JuliusMartensen 🐛 💻 📖 🔌 💡 🚇 🚧 📦 📣 👀 🔧 📓 |
ngam 💻 🚇 📦 👀 🔧 |
Kaze Wong 🐛 💻 💡 🚇 🚧 📣 👀 🔬 📓 |
Christopher Rackauckas 🐛 💻 🔌 💡 🚇 📣 👀 🔬 🔧 |
Patrick Kidger 🐛 💻 📖 🔌 💡 🚧 📣 👀 🔬 🔧 |
Okon Samuel 🐛 💻 📖 🚧 💡 🚇 👀 |
William Booth-Clibborn 💻 🌍 📖 📓 🚧 👀 🔧 |
Pablo Lemos 🐛 💡 📣 👀 🔬 📓 |
Jerry Ling 🐛 💻 📖 🌍 💡 📣 👀 📓 |
Charles Fox 🐛 💻 💡 🚧 📣 👀 🔬 📓 |
Johann Brehmer 💻 📖 💡 📣 👀 🔬 |
Marius Millea 💻 💡 📣 👀 📓 |
Coba 🐛 💻 💡 👀 📓 |
Pietro Monticone 🐛 📖 💡 |
Mateusz Kubica 📖 💡 |
Jay Wadekar 🐛 💡 📣 🔬 |
Anthony Blaom, PhD 🚇 💡 👀 |
Jgmedina95 🐛 💡 👀 |
Michael Abbott 💻 💡 👀 🔧 |
Oscar Smith 💻 💡 |
Eric Hanson 💡 📣 📓 |
Henrique Becker 💻 💡 👀 |
qwertyjl 🐛 📖 💡 📓 |
Rik Huijzer 💡 🚇 |
Hongyu Wang 💡 📣 🔬 |
Saurav Maheshkar 🔧 |
Install in Julia with:
using Pkg
Pkg.add("SymbolicRegression")
The easiest way to use SymbolicRegression.jl is with MLJ. Let's see an example:
import SymbolicRegression: SRRegressor
import MLJ: machine, fit!, predict, report
# Dataset with two named features:
X = (a = rand(500), b = rand(500))
# and one target:
y = @. 2 * cos(X.a * 23.5) - X.b ^ 2
# with some noise:
y = y .+ randn(500) .* 1e-3
model = SRRegressor(
niterations=50,
binary_operators=[+, -, *],
unary_operators=[cos],
)
Now, let's create and train this model on our data:
mach = machine(model, X, y)
fit!(mach)
You will notice that expressions are printed
using the column names of our table. If,
instead of a table-like object,
a simple array is passed
(e.g., X=randn(100, 2)
),
x1, ..., xn
will be used for variable names.
Let's look at the expressions discovered:
report(mach)
Finally, we can make predictions with the expressions on new data:
predict(mach, X)
This will make predictions using the expression
selected by model.selection_method
,
which by default is a mix of accuracy and complexity.
You can override this selection and select an equation from the Pareto front manually with:
predict(mach, (data=X, idx=2))
where here we choose to evaluate the second equation.
For fitting multiple outputs, one can use MultitargetSRRegressor
(and pass an array of indices to idx
in predict
for selecting specific equations).
For a full list of options available to each regressor, see the API page.
The heart of SymbolicRegression.jl is the
equation_search
function.
This takes a 2D array and attempts
to model a 1D array using analytic functional forms.
Note: unlike the MLJ interface,
this assumes column-major input of shape [features, rows].
import SymbolicRegression: Options, equation_search
X = randn(2, 100)
y = 2 * cos.(X[2, :]) + X[1, :] .^ 2 .- 2
options = Options(
binary_operators=[+, *, /, -],
unary_operators=[cos, exp],
populations=20
)
hall_of_fame = equation_search(
X, y, niterations=40, options=options,
parallelism=:multithreading
)
You can view the resultant equations in the dominating Pareto front (best expression seen at each complexity) with:
import SymbolicRegression: calculate_pareto_frontier
dominating = calculate_pareto_frontier(hall_of_fame)
This is a vector of PopMember
type - which contains the expression along with the score.
We can get the expressions with:
trees = [member.tree for member in dominating]
Each of these equations is a Node{T}
type for some constant type T
(like Float32
).
You can evaluate a given tree with:
import SymbolicRegression: eval_tree_array
tree = trees[end]
output, did_succeed = eval_tree_array(tree, X, options)
The output
array will contain the result of the tree at each of the 100 rows.
This did_succeed
flag detects whether an evaluation was successful, or whether
encountered any NaNs or Infs during calculation (such as, e.g., sqrt(-1)
).
Expressions are represented as the Node
type which is developed
in the DynamicExpressions.jl package.
You can manipulate and construct expressions directly. For example:
import SymbolicRegression: Options, Node, eval_tree_array
options = Options(;
binary_operators=[+, -, *, ^, /], unary_operators=[cos, exp, sin]
)
x1, x2, x3 = [Node(; feature=i) for i=1:3]
tree = cos(x1 - 3.2 * x2) - x1^3.2
This tree has Float64
constants, so the type of the entire tree
will be promoted to Node{Float64}
.
We can convert all constants (recursively) to Float32
:
float32_tree = convert(Node{Float32}, tree)
We can then evaluate this tree on a dataset:
X = rand(Float32, 3, 100)
output, did_succeed = eval_tree_array(tree, X, options)
We can view the equations in the dominating Pareto frontier with:
dominating = calculate_pareto_frontier(hall_of_fame)
We can convert the best equation to SymbolicUtils.jl with the following function:
import SymbolicRegression: node_to_symbolic
eqn = node_to_symbolic(dominating[end].tree, options)
println(simplify(eqn*5 + 3))
We can also print out the full pareto frontier like so:
import SymbolicRegression: compute_complexity, string_tree
println("Complexity\tMSE\tEquation")
for member in dominating
complexity = compute_complexity(member, options)
loss = member.loss
string = string_tree(member.tree, options)
println("$(complexity)\t$(loss)\t$(string)")
end
SymbolicRegression.jl is organized roughly as follows. Rounded rectangles indicate objects, and rectangles indicate functions.
(if you can't see this diagram being rendered, try pasting it into mermaid-js.github.io/mermaid-live-editor)
flowchart TB
op([Options])
d([Dataset])
op --> ES
d --> ES
subgraph ES[equation_search]
direction TB
IP[sr_spawner]
IP --> p1
IP --> p2
subgraph p1[Thread 1]
direction LR
pop1([Population])
pop1 --> src[s_r_cycle]
src --> opt[optimize_and_simplify_population]
opt --> pop1
end
subgraph p2[Thread 2]
direction LR
pop2([Population])
pop2 --> src2[s_r_cycle]
src2 --> opt2[optimize_and_simplify_population]
opt2 --> pop2
end
pop1 --> hof
pop2 --> hof
hof([HallOfFame])
hof --> migration
pop1 <-.-> migration
pop2 <-.-> migration
migration[migrate!]
end
ES --> output([HallOfFame])
The HallOfFame
objects store the expressions with the lowest loss seen at each complexity.
The dependency structure of the code itself is as follows:
stateDiagram-v2
AdaptiveParsimony --> Mutate
AdaptiveParsimony --> Population
AdaptiveParsimony --> RegularizedEvolution
AdaptiveParsimony --> SingleIteration
AdaptiveParsimony --> SymbolicRegression
CheckConstraints --> Mutate
CheckConstraints --> SymbolicRegression
Complexity --> CheckConstraints
Complexity --> HallOfFame
Complexity --> LossFunctions
Complexity --> Mutate
Complexity --> Population
Complexity --> SearchUtils
Complexity --> SingleIteration
Complexity --> SymbolicRegression
ConstantOptimization --> Mutate
ConstantOptimization --> SingleIteration
Core --> AdaptiveParsimony
Core --> CheckConstraints
Core --> Complexity
Core --> ConstantOptimization
Core --> HallOfFame
Core --> InterfaceDynamicExpressions
Core --> LossFunctions
Core --> Migration
Core --> Mutate
Core --> MutationFunctions
Core --> PopMember
Core --> Population
Core --> Recorder
Core --> RegularizedEvolution
Core --> SearchUtils
Core --> SingleIteration
Core --> SymbolicRegression
Dataset --> Core
HallOfFame --> SearchUtils
HallOfFame --> SingleIteration
HallOfFame --> SymbolicRegression
InterfaceDynamicExpressions --> LossFunctions
InterfaceDynamicExpressions --> SymbolicRegression
LossFunctions --> ConstantOptimization
LossFunctions --> HallOfFame
LossFunctions --> Mutate
LossFunctions --> PopMember
LossFunctions --> Population
LossFunctions --> SymbolicRegression
Migration --> SymbolicRegression
Mutate --> RegularizedEvolution
MutationFunctions --> Mutate
MutationFunctions --> Population
MutationFunctions --> SymbolicRegression
Operators --> Core
Operators --> Options
Options --> Core
OptionsStruct --> Core
OptionsStruct --> Options
PopMember --> ConstantOptimization
PopMember --> HallOfFame
PopMember --> Migration
PopMember --> Mutate
PopMember --> Population
PopMember --> RegularizedEvolution
PopMember --> SingleIteration
PopMember --> SymbolicRegression
Population --> Migration
Population --> RegularizedEvolution
Population --> SearchUtils
Population --> SingleIteration
Population --> SymbolicRegression
ProgramConstants --> Core
ProgramConstants --> Dataset
ProgressBars --> SearchUtils
ProgressBars --> SymbolicRegression
Recorder --> Mutate
Recorder --> RegularizedEvolution
Recorder --> SingleIteration
Recorder --> SymbolicRegression
RegularizedEvolution --> SingleIteration
SearchUtils --> SymbolicRegression
SingleIteration --> SymbolicRegression
Utils --> CheckConstraints
Utils --> ConstantOptimization
Utils --> Options
Utils --> PopMember
Utils --> SingleIteration
Utils --> SymbolicRegression
Bash command to generate dependency structure from src
directory (requires vim-stream
):
echo 'stateDiagram-v2'
IFS=$'\n'
for f in *.jl; do
for line in $(cat $f | grep -e 'import \.\.' -e 'import \.'); do
echo $(echo $line | vims -s 'dwf:d$' -t '%s/^\.*//g' '%s/Module//g') $(basename "$f" .jl);
done;
done | vims -l 'f a--> ' | sort
See https://astroautomata.com/SymbolicRegression.jl/stable/api/#Options