-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathpage-writeback.c
2410 lines (2166 loc) · 73.5 KB
/
page-writeback.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* mm/page-writeback.c
*
* Copyright (C) 2002, Linus Torvalds.
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*
* Contains functions related to writing back dirty pages at the
* address_space level.
*
* 10Apr2002 Andrew Morton
* Initial version
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/blkdev.h>
#include <linux/mpage.h>
#include <linux/rmap.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
#include <linux/pagevec.h>
#include <linux/timer.h>
#include <linux/sched/rt.h>
#include <linux/mm_inline.h>
#include <trace/events/writeback.h>
#include "internal.h"
/*
* Sleep at most 200ms at a time in balance_dirty_pages().
*/
#define MAX_PAUSE max(HZ/5, 1)
/*
* Try to keep balance_dirty_pages() call intervals higher than this many pages
* by raising pause time to max_pause when falls below it.
*/
#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
/*
* Estimate write bandwidth at 200ms intervals.
*/
#define BANDWIDTH_INTERVAL max(HZ/5, 1)
#define RATELIMIT_CALC_SHIFT 10
/*
* After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
* will look to see if it needs to force writeback or throttling.
*/
static long ratelimit_pages = 32;
/* The following parameters are exported via /proc/sys/vm */
/*
* Start background writeback (via writeback threads) at this percentage
*/
int dirty_background_ratio = 10;
/*
* dirty_background_bytes starts at 0 (disabled) so that it is a function of
* dirty_background_ratio * the amount of dirtyable memory
*/
unsigned long dirty_background_bytes;
/*
* free highmem will not be subtracted from the total free memory
* for calculating free ratios if vm_highmem_is_dirtyable is true
*/
int vm_highmem_is_dirtyable;
/*
* The generator of dirty data starts writeback at this percentage
*/
int vm_dirty_ratio = 20;
/*
* vm_dirty_bytes starts at 0 (disabled) so that it is a function of
* vm_dirty_ratio * the amount of dirtyable memory
*/
unsigned long vm_dirty_bytes;
/*
* The interval between `kupdate'-style writebacks
*/
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
EXPORT_SYMBOL_GPL(dirty_writeback_interval);
/*
* The longest time for which data is allowed to remain dirty
*/
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
/*
* Flag that makes the machine dump writes/reads and block dirtyings.
*/
int block_dump;
/*
* Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
* a full sync is triggered after this time elapses without any disk activity.
*/
int laptop_mode;
EXPORT_SYMBOL(laptop_mode);
/* End of sysctl-exported parameters */
unsigned long global_dirty_limit;
/*
* Scale the writeback cache size proportional to the relative writeout speeds.
*
* We do this by keeping a floating proportion between BDIs, based on page
* writeback completions [end_page_writeback()]. Those devices that write out
* pages fastest will get the larger share, while the slower will get a smaller
* share.
*
* We use page writeout completions because we are interested in getting rid of
* dirty pages. Having them written out is the primary goal.
*
* We introduce a concept of time, a period over which we measure these events,
* because demand can/will vary over time. The length of this period itself is
* measured in page writeback completions.
*
*/
static struct fprop_global writeout_completions;
static void writeout_period(unsigned long t);
/* Timer for aging of writeout_completions */
static struct timer_list writeout_period_timer =
TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
static unsigned long writeout_period_time = 0;
/*
* Length of period for aging writeout fractions of bdis. This is an
* arbitrarily chosen number. The longer the period, the slower fractions will
* reflect changes in current writeout rate.
*/
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
/*
* In a memory zone, there is a certain amount of pages we consider
* available for the page cache, which is essentially the number of
* free and reclaimable pages, minus some zone reserves to protect
* lowmem and the ability to uphold the zone's watermarks without
* requiring writeback.
*
* This number of dirtyable pages is the base value of which the
* user-configurable dirty ratio is the effictive number of pages that
* are allowed to be actually dirtied. Per individual zone, or
* globally by using the sum of dirtyable pages over all zones.
*
* Because the user is allowed to specify the dirty limit globally as
* absolute number of bytes, calculating the per-zone dirty limit can
* require translating the configured limit into a percentage of
* global dirtyable memory first.
*/
/**
* zone_dirtyable_memory - number of dirtyable pages in a zone
* @zone: the zone
*
* Returns the zone's number of pages potentially available for dirty
* page cache. This is the base value for the per-zone dirty limits.
*/
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
unsigned long nr_pages;
nr_pages = zone_page_state(zone, NR_FREE_PAGES);
nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
return nr_pages;
}
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
int node;
unsigned long x = 0;
for_each_node_state(node, N_HIGH_MEMORY) {
struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
x += zone_dirtyable_memory(z);
}
/*
* Unreclaimable memory (kernel memory or anonymous memory
* without swap) can bring down the dirtyable pages below
* the zone's dirty balance reserve and the above calculation
* will underflow. However we still want to add in nodes
* which are below threshold (negative values) to get a more
* accurate calculation but make sure that the total never
* underflows.
*/
if ((long)x < 0)
x = 0;
/*
* Make sure that the number of highmem pages is never larger
* than the number of the total dirtyable memory. This can only
* occur in very strange VM situations but we want to make sure
* that this does not occur.
*/
return min(x, total);
#else
return 0;
#endif
}
/**
* global_dirtyable_memory - number of globally dirtyable pages
*
* Returns the global number of pages potentially available for dirty
* page cache. This is the base value for the global dirty limits.
*/
static unsigned long global_dirtyable_memory(void)
{
unsigned long x;
x = global_page_state(NR_FREE_PAGES);
x -= min(x, dirty_balance_reserve);
x += global_page_state(NR_INACTIVE_FILE);
x += global_page_state(NR_ACTIVE_FILE);
if (!vm_highmem_is_dirtyable)
x -= highmem_dirtyable_memory(x);
return x + 1; /* Ensure that we never return 0 */
}
/*
* global_dirty_limits - background-writeback and dirty-throttling thresholds
*
* Calculate the dirty thresholds based on sysctl parameters
* - vm.dirty_background_ratio or vm.dirty_background_bytes
* - vm.dirty_ratio or vm.dirty_bytes
* The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
* real-time tasks.
*/
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
const unsigned long available_memory = global_dirtyable_memory();
unsigned long background;
unsigned long dirty;
struct task_struct *tsk;
if (vm_dirty_bytes)
dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
else
dirty = (vm_dirty_ratio * available_memory) / 100;
if (dirty_background_bytes)
background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
else
background = (dirty_background_ratio * available_memory) / 100;
if (background >= dirty)
background = dirty / 2;
tsk = current;
if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
background += background / 4;
dirty += dirty / 4;
}
*pbackground = background;
*pdirty = dirty;
trace_global_dirty_state(background, dirty);
}
/**
* zone_dirty_limit - maximum number of dirty pages allowed in a zone
* @zone: the zone
*
* Returns the maximum number of dirty pages allowed in a zone, based
* on the zone's dirtyable memory.
*/
static unsigned long zone_dirty_limit(struct zone *zone)
{
unsigned long zone_memory = zone_dirtyable_memory(zone);
struct task_struct *tsk = current;
unsigned long dirty;
if (vm_dirty_bytes)
dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
zone_memory / global_dirtyable_memory();
else
dirty = vm_dirty_ratio * zone_memory / 100;
if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
dirty += dirty / 4;
return dirty;
}
/**
* zone_dirty_ok - tells whether a zone is within its dirty limits
* @zone: the zone to check
*
* Returns %true when the dirty pages in @zone are within the zone's
* dirty limit, %false if the limit is exceeded.
*/
bool zone_dirty_ok(struct zone *zone)
{
unsigned long limit = zone_dirty_limit(zone);
return zone_page_state(zone, NR_FILE_DIRTY) +
zone_page_state(zone, NR_UNSTABLE_NFS) +
zone_page_state(zone, NR_WRITEBACK) <= limit;
}
int dirty_background_ratio_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write)
dirty_background_bytes = 0;
return ret;
}
int dirty_background_bytes_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write)
dirty_background_ratio = 0;
return ret;
}
int dirty_ratio_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int old_ratio = vm_dirty_ratio;
int ret;
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
writeback_set_ratelimit();
vm_dirty_bytes = 0;
}
return ret;
}
int dirty_bytes_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
unsigned long old_bytes = vm_dirty_bytes;
int ret;
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
writeback_set_ratelimit();
vm_dirty_ratio = 0;
}
return ret;
}
static unsigned long wp_next_time(unsigned long cur_time)
{
cur_time += VM_COMPLETIONS_PERIOD_LEN;
/* 0 has a special meaning... */
if (!cur_time)
return 1;
return cur_time;
}
/*
* Increment the BDI's writeout completion count and the global writeout
* completion count. Called from test_clear_page_writeback().
*/
static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
{
__inc_bdi_stat(bdi, BDI_WRITTEN);
__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
bdi->max_prop_frac);
/* First event after period switching was turned off? */
if (!unlikely(writeout_period_time)) {
/*
* We can race with other __bdi_writeout_inc calls here but
* it does not cause any harm since the resulting time when
* timer will fire and what is in writeout_period_time will be
* roughly the same.
*/
writeout_period_time = wp_next_time(jiffies);
mod_timer(&writeout_period_timer, writeout_period_time);
}
}
void bdi_writeout_inc(struct backing_dev_info *bdi)
{
unsigned long flags;
local_irq_save(flags);
__bdi_writeout_inc(bdi);
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(bdi_writeout_inc);
/*
* Obtain an accurate fraction of the BDI's portion.
*/
static void bdi_writeout_fraction(struct backing_dev_info *bdi,
long *numerator, long *denominator)
{
fprop_fraction_percpu(&writeout_completions, &bdi->completions,
numerator, denominator);
}
/*
* On idle system, we can be called long after we scheduled because we use
* deferred timers so count with missed periods.
*/
static void writeout_period(unsigned long t)
{
int miss_periods = (jiffies - writeout_period_time) /
VM_COMPLETIONS_PERIOD_LEN;
if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
writeout_period_time = wp_next_time(writeout_period_time +
miss_periods * VM_COMPLETIONS_PERIOD_LEN);
mod_timer(&writeout_period_timer, writeout_period_time);
} else {
/*
* Aging has zeroed all fractions. Stop wasting CPU on period
* updates.
*/
writeout_period_time = 0;
}
}
/*
* bdi_min_ratio keeps the sum of the minimum dirty shares of all
* registered backing devices, which, for obvious reasons, can not
* exceed 100%.
*/
static unsigned int bdi_min_ratio;
int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
int ret = 0;
spin_lock_bh(&bdi_lock);
if (min_ratio > bdi->max_ratio) {
ret = -EINVAL;
} else {
min_ratio -= bdi->min_ratio;
if (bdi_min_ratio + min_ratio < 100) {
bdi_min_ratio += min_ratio;
bdi->min_ratio += min_ratio;
} else {
ret = -EINVAL;
}
}
spin_unlock_bh(&bdi_lock);
return ret;
}
int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
int ret = 0;
if (max_ratio > 100)
return -EINVAL;
spin_lock_bh(&bdi_lock);
if (bdi->min_ratio > max_ratio) {
ret = -EINVAL;
} else {
bdi->max_ratio = max_ratio;
bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
}
spin_unlock_bh(&bdi_lock);
return ret;
}
EXPORT_SYMBOL(bdi_set_max_ratio);
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
unsigned long bg_thresh)
{
return (thresh + bg_thresh) / 2;
}
static unsigned long hard_dirty_limit(unsigned long thresh)
{
return max(thresh, global_dirty_limit);
}
/**
* bdi_dirty_limit - @bdi's share of dirty throttling threshold
* @bdi: the backing_dev_info to query
* @dirty: global dirty limit in pages
*
* Returns @bdi's dirty limit in pages. The term "dirty" in the context of
* dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
*
* Note that balance_dirty_pages() will only seriously take it as a hard limit
* when sleeping max_pause per page is not enough to keep the dirty pages under
* control. For example, when the device is completely stalled due to some error
* conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
* In the other normal situations, it acts more gently by throttling the tasks
* more (rather than completely block them) when the bdi dirty pages go high.
*
* It allocates high/low dirty limits to fast/slow devices, in order to prevent
* - starving fast devices
* - piling up dirty pages (that will take long time to sync) on slow devices
*
* The bdi's share of dirty limit will be adapting to its throughput and
* bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
*/
unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
{
u64 bdi_dirty;
long numerator, denominator;
/*
* Calculate this BDI's share of the dirty ratio.
*/
bdi_writeout_fraction(bdi, &numerator, &denominator);
bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
bdi_dirty *= numerator;
do_div(bdi_dirty, denominator);
bdi_dirty += (dirty * bdi->min_ratio) / 100;
if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
bdi_dirty = dirty * bdi->max_ratio / 100;
return bdi_dirty;
}
/*
* setpoint - dirty 3
* f(dirty) := 1.0 + (----------------)
* limit - setpoint
*
* it's a 3rd order polynomial that subjects to
*
* (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
* (2) f(setpoint) = 1.0 => the balance point
* (3) f(limit) = 0 => the hard limit
* (4) df/dx <= 0 => negative feedback control
* (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
* => fast response on large errors; small oscillation near setpoint
*/
static long long pos_ratio_polynom(unsigned long setpoint,
unsigned long dirty,
unsigned long limit)
{
long long pos_ratio;
long x;
x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
(limit - setpoint) | 1);
pos_ratio = x;
pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}
/*
* Dirty position control.
*
* (o) global/bdi setpoints
*
* We want the dirty pages be balanced around the global/bdi setpoints.
* When the number of dirty pages is higher/lower than the setpoint, the
* dirty position control ratio (and hence task dirty ratelimit) will be
* decreased/increased to bring the dirty pages back to the setpoint.
*
* pos_ratio = 1 << RATELIMIT_CALC_SHIFT
*
* if (dirty < setpoint) scale up pos_ratio
* if (dirty > setpoint) scale down pos_ratio
*
* if (bdi_dirty < bdi_setpoint) scale up pos_ratio
* if (bdi_dirty > bdi_setpoint) scale down pos_ratio
*
* task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
*
* (o) global control line
*
* ^ pos_ratio
* |
* | |<===== global dirty control scope ======>|
* 2.0 .............*
* | .*
* | . *
* | . *
* | . *
* | . *
* | . *
* 1.0 ................................*
* | . . *
* | . . *
* | . . *
* | . . *
* | . . *
* 0 +------------.------------------.----------------------*------------->
* freerun^ setpoint^ limit^ dirty pages
*
* (o) bdi control line
*
* ^ pos_ratio
* |
* | *
* | *
* | *
* | *
* | * |<=========== span ============>|
* 1.0 .......................*
* | . *
* | . *
* | . *
* | . *
* | . *
* | . *
* | . *
* | . *
* | . *
* | . *
* | . *
* 1/4 ...............................................* * * * * * * * * * * *
* | . .
* | . .
* | . .
* 0 +----------------------.-------------------------------.------------->
* bdi_setpoint^ x_intercept^
*
* The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
* be smoothly throttled down to normal if it starts high in situations like
* - start writing to a slow SD card and a fast disk at the same time. The SD
* card's bdi_dirty may rush to many times higher than bdi_setpoint.
* - the bdi dirty thresh drops quickly due to change of JBOD workload
*/
static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
unsigned long thresh,
unsigned long bg_thresh,
unsigned long dirty,
unsigned long bdi_thresh,
unsigned long bdi_dirty)
{
unsigned long write_bw = bdi->avg_write_bandwidth;
unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
unsigned long limit = hard_dirty_limit(thresh);
unsigned long x_intercept;
unsigned long setpoint; /* dirty pages' target balance point */
unsigned long bdi_setpoint;
unsigned long span;
long long pos_ratio; /* for scaling up/down the rate limit */
long x;
if (unlikely(dirty >= limit))
return 0;
/*
* global setpoint
*
* See comment for pos_ratio_polynom().
*/
setpoint = (freerun + limit) / 2;
pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
/*
* The strictlimit feature is a tool preventing mistrusted filesystems
* from growing a large number of dirty pages before throttling. For
* such filesystems balance_dirty_pages always checks bdi counters
* against bdi limits. Even if global "nr_dirty" is under "freerun".
* This is especially important for fuse which sets bdi->max_ratio to
* 1% by default. Without strictlimit feature, fuse writeback may
* consume arbitrary amount of RAM because it is accounted in
* NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
*
* Here, in bdi_position_ratio(), we calculate pos_ratio based on
* two values: bdi_dirty and bdi_thresh. Let's consider an example:
* total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
* limits are set by default to 10% and 20% (background and throttle).
* Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
* bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
* about ~6K pages (as the average of background and throttle bdi
* limits). The 3rd order polynomial will provide positive feedback if
* bdi_dirty is under bdi_setpoint and vice versa.
*
* Note, that we cannot use global counters in these calculations
* because we want to throttle process writing to a strictlimit BDI
* much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
* in the example above).
*/
if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
long long bdi_pos_ratio;
unsigned long bdi_bg_thresh;
if (bdi_dirty < 8)
return min_t(long long, pos_ratio * 2,
2 << RATELIMIT_CALC_SHIFT);
if (bdi_dirty >= bdi_thresh)
return 0;
bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
bdi_bg_thresh);
if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
return 0;
bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
bdi_thresh);
/*
* Typically, for strictlimit case, bdi_setpoint << setpoint
* and pos_ratio >> bdi_pos_ratio. In the other words global
* state ("dirty") is not limiting factor and we have to
* make decision based on bdi counters. But there is an
* important case when global pos_ratio should get precedence:
* global limits are exceeded (e.g. due to activities on other
* BDIs) while given strictlimit BDI is below limit.
*
* "pos_ratio * bdi_pos_ratio" would work for the case above,
* but it would look too non-natural for the case of all
* activity in the system coming from a single strictlimit BDI
* with bdi->max_ratio == 100%.
*
* Note that min() below somewhat changes the dynamics of the
* control system. Normally, pos_ratio value can be well over 3
* (when globally we are at freerun and bdi is well below bdi
* setpoint). Now the maximum pos_ratio in the same situation
* is 2. We might want to tweak this if we observe the control
* system is too slow to adapt.
*/
return min(pos_ratio, bdi_pos_ratio);
}
/*
* We have computed basic pos_ratio above based on global situation. If
* the bdi is over/under its share of dirty pages, we want to scale
* pos_ratio further down/up. That is done by the following mechanism.
*/
/*
* bdi setpoint
*
* f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
*
* x_intercept - bdi_dirty
* := --------------------------
* x_intercept - bdi_setpoint
*
* The main bdi control line is a linear function that subjects to
*
* (1) f(bdi_setpoint) = 1.0
* (2) k = - 1 / (8 * write_bw) (in single bdi case)
* or equally: x_intercept = bdi_setpoint + 8 * write_bw
*
* For single bdi case, the dirty pages are observed to fluctuate
* regularly within range
* [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
* for various filesystems, where (2) can yield in a reasonable 12.5%
* fluctuation range for pos_ratio.
*
* For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
* own size, so move the slope over accordingly and choose a slope that
* yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
*/
if (unlikely(bdi_thresh > thresh))
bdi_thresh = thresh;
/*
* It's very possible that bdi_thresh is close to 0 not because the
* device is slow, but that it has remained inactive for long time.
* Honour such devices a reasonable good (hopefully IO efficient)
* threshold, so that the occasional writes won't be blocked and active
* writes can rampup the threshold quickly.
*/
bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
/*
* scale global setpoint to bdi's:
* bdi_setpoint = setpoint * bdi_thresh / thresh
*/
x = div_u64((u64)bdi_thresh << 16, thresh | 1);
bdi_setpoint = setpoint * (u64)x >> 16;
/*
* Use span=(8*write_bw) in single bdi case as indicated by
* (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
*
* bdi_thresh thresh - bdi_thresh
* span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
* thresh thresh
*/
span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
x_intercept = bdi_setpoint + span;
if (bdi_dirty < x_intercept - span / 4) {
pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty),
(x_intercept - bdi_setpoint) | 1);
} else
pos_ratio /= 4;
/*
* bdi reserve area, safeguard against dirty pool underrun and disk idle
* It may push the desired control point of global dirty pages higher
* than setpoint.
*/
x_intercept = bdi_thresh / 2;
if (bdi_dirty < x_intercept) {
if (bdi_dirty > x_intercept / 8)
pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
else
pos_ratio *= 8;
}
return pos_ratio;
}
static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
unsigned long elapsed,
unsigned long written)
{
const unsigned long period = roundup_pow_of_two(3 * HZ);
unsigned long avg = bdi->avg_write_bandwidth;
unsigned long old = bdi->write_bandwidth;
u64 bw;
/*
* bw = written * HZ / elapsed
*
* bw * elapsed + write_bandwidth * (period - elapsed)
* write_bandwidth = ---------------------------------------------------
* period
*
* @written may have decreased due to account_page_redirty().
* Avoid underflowing @bw calculation.
*/
bw = written - min(written, bdi->written_stamp);
bw *= HZ;
if (unlikely(elapsed > period)) {
do_div(bw, elapsed);
avg = bw;
goto out;
}
bw += (u64)bdi->write_bandwidth * (period - elapsed);
bw >>= ilog2(period);
/*
* one more level of smoothing, for filtering out sudden spikes
*/
if (avg > old && old >= (unsigned long)bw)
avg -= (avg - old) >> 3;
if (avg < old && old <= (unsigned long)bw)
avg += (old - avg) >> 3;
out:
bdi->write_bandwidth = bw;
bdi->avg_write_bandwidth = avg;
}
/*
* The global dirtyable memory and dirty threshold could be suddenly knocked
* down by a large amount (eg. on the startup of KVM in a swapless system).
* This may throw the system into deep dirty exceeded state and throttle
* heavy/light dirtiers alike. To retain good responsiveness, maintain
* global_dirty_limit for tracking slowly down to the knocked down dirty
* threshold.
*/
static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
{
unsigned long limit = global_dirty_limit;
/*
* Follow up in one step.
*/
if (limit < thresh) {
limit = thresh;
goto update;
}
/*
* Follow down slowly. Use the higher one as the target, because thresh
* may drop below dirty. This is exactly the reason to introduce
* global_dirty_limit which is guaranteed to lie above the dirty pages.
*/
thresh = max(thresh, dirty);
if (limit > thresh) {
limit -= (limit - thresh) >> 5;
goto update;
}
return;
update:
global_dirty_limit = limit;
}
static void global_update_bandwidth(unsigned long thresh,
unsigned long dirty,
unsigned long now)
{
static DEFINE_SPINLOCK(dirty_lock);
static unsigned long update_time = INITIAL_JIFFIES;
/*
* check locklessly first to optimize away locking for the most time
*/
if (time_before(now, update_time + BANDWIDTH_INTERVAL))
return;
spin_lock(&dirty_lock);
if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
update_dirty_limit(thresh, dirty);
update_time = now;
}
spin_unlock(&dirty_lock);
}
/*
* Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
*
* Normal bdi tasks will be curbed at or below it in long term.
* Obviously it should be around (write_bw / N) when there are N dd tasks.
*/
static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
unsigned long thresh,
unsigned long bg_thresh,
unsigned long dirty,
unsigned long bdi_thresh,
unsigned long bdi_dirty,
unsigned long dirtied,
unsigned long elapsed)
{
unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
unsigned long limit = hard_dirty_limit(thresh);
unsigned long setpoint = (freerun + limit) / 2;
unsigned long write_bw = bdi->avg_write_bandwidth;
unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
unsigned long dirty_rate;
unsigned long task_ratelimit;
unsigned long balanced_dirty_ratelimit;
unsigned long pos_ratio;
unsigned long step;
unsigned long x;
/*
* The dirty rate will match the writeout rate in long term, except
* when dirty pages are truncated by userspace or re-dirtied by FS.
*/
dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
bdi_thresh, bdi_dirty);
/*
* task_ratelimit reflects each dd's dirty rate for the past 200ms.
*/
task_ratelimit = (u64)dirty_ratelimit *
pos_ratio >> RATELIMIT_CALC_SHIFT;
task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
/*
* A linear estimation of the "balanced" throttle rate. The theory is,
* if there are N dd tasks, each throttled at task_ratelimit, the bdi's
* dirty_rate will be measured to be (N * task_ratelimit). So the below
* formula will yield the balanced rate limit (write_bw / N).
*
* Note that the expanded form is not a pure rate feedback:
* rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
* but also takes pos_ratio into account:
* rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
*
* (1) is not realistic because pos_ratio also takes part in balancing
* the dirty rate. Consider the state
* pos_ratio = 0.5 (3)
* rate = 2 * (write_bw / N) (4)