|
| 1 | +# Minimal Latency Tracking for PraisonAI MCP Server |
| 2 | + |
| 3 | +This solution provides latency tracking for MCP servers without modifying any PraisonAI core files. It's implemented as a custom tool that can be used externally. |
| 4 | + |
| 5 | +## Overview |
| 6 | + |
| 7 | +The latency tracking solution measures three key phases: |
| 8 | +1. **Planning Process** - Time taken for agent planning and decision making |
| 9 | +2. **Tool Usage** - Time spent executing tools |
| 10 | +3. **LLM Answer Generation** - Time spent generating responses |
| 11 | + |
| 12 | +## Quick Start |
| 13 | + |
| 14 | +### Option 1: Use as a Custom Tool |
| 15 | + |
| 16 | +```python |
| 17 | +from latency_tracker_tool import latency_tracking_tool |
| 18 | + |
| 19 | +# Add to your agent |
| 20 | +agent = Agent( |
| 21 | + name="Assistant", |
| 22 | + role="Helper", |
| 23 | + tools=[latency_tracking_tool] |
| 24 | +) |
| 25 | + |
| 26 | +# Track manually |
| 27 | +latency_tracking_tool("start", "planning", "request_1") |
| 28 | +response = agent.chat("Your query") |
| 29 | +latency_tracking_tool("end", "planning", "request_1") |
| 30 | + |
| 31 | +# Get metrics |
| 32 | +metrics = latency_tracking_tool("metrics", request_id="request_1") |
| 33 | +``` |
| 34 | + |
| 35 | +### Option 2: Use Context Managers |
| 36 | + |
| 37 | +```python |
| 38 | +from latency_tracker_tool import tracker |
| 39 | + |
| 40 | +# Track with context manager |
| 41 | +with tracker.track("planning", "request_1"): |
| 42 | + response = agent.chat("Your query") |
| 43 | + |
| 44 | +# Get metrics |
| 45 | +metrics = tracker.get_metrics("request_1") |
| 46 | +``` |
| 47 | + |
| 48 | +### Option 3: Use Wrapper Classes |
| 49 | + |
| 50 | +```python |
| 51 | +from latency_tracker_tool import create_tracked_agent |
| 52 | + |
| 53 | +# Create tracked agent class |
| 54 | +TrackedAgent = create_tracked_agent(Agent) |
| 55 | + |
| 56 | +# Use like normal agent |
| 57 | +agent = TrackedAgent( |
| 58 | + name="Assistant", |
| 59 | + role="Helper", |
| 60 | + request_id="request_1" |
| 61 | +) |
| 62 | + |
| 63 | +# Operations are automatically tracked |
| 64 | +response = agent.chat("Your query") |
| 65 | +``` |
| 66 | + |
| 67 | +## MCP Server Integration |
| 68 | + |
| 69 | +### Basic MCP Tracking |
| 70 | + |
| 71 | +```python |
| 72 | +from latency_tracker_tool import tracker |
| 73 | + |
| 74 | +def handle_mcp_request(request_data): |
| 75 | + request_id = request_data.get('id', 'default') |
| 76 | + |
| 77 | + with tracker.track("total_request", request_id): |
| 78 | + # Track planning |
| 79 | + with tracker.track("planning", request_id): |
| 80 | + plan = create_plan(request_data) |
| 81 | + |
| 82 | + # Track tool usage |
| 83 | + with tracker.track("tool_usage", request_id): |
| 84 | + tool_results = execute_tools(plan) |
| 85 | + |
| 86 | + # Track LLM generation |
| 87 | + with tracker.track("llm_generation", request_id): |
| 88 | + response = generate_response(tool_results) |
| 89 | + |
| 90 | + # Include metrics in response |
| 91 | + metrics = tracker.get_metrics(request_id) |
| 92 | + return { |
| 93 | + "response": response, |
| 94 | + "latency_metrics": metrics |
| 95 | + } |
| 96 | +``` |
| 97 | + |
| 98 | +### Advanced MCP Server Wrapper |
| 99 | + |
| 100 | +```python |
| 101 | +from latency_tracker_tool import tracker |
| 102 | + |
| 103 | +def add_tracking_to_mcp_server(mcp_server): |
| 104 | + """Add tracking to existing MCP server.""" |
| 105 | + original_handle = mcp_server.handle_request |
| 106 | + |
| 107 | + def tracked_handle(request_data): |
| 108 | + request_id = request_data.get('id', 'mcp_request') |
| 109 | + |
| 110 | + with tracker.track("mcp_total", request_id): |
| 111 | + response = original_handle(request_data) |
| 112 | + |
| 113 | + return response |
| 114 | + |
| 115 | + mcp_server.handle_request = tracked_handle |
| 116 | + return mcp_server |
| 117 | +``` |
| 118 | + |
| 119 | +## Tools with Built-in Tracking |
| 120 | + |
| 121 | +Create a `tools.py` file in your project root: |
| 122 | + |
| 123 | +```python |
| 124 | +from latency_tracker_tool import track_latency, tracker |
| 125 | + |
| 126 | +@track_latency("tool_search", "current_request") |
| 127 | +def search_tool(query: str) -> str: |
| 128 | + """Search with automatic latency tracking.""" |
| 129 | + # Your search logic |
| 130 | + return results |
| 131 | + |
| 132 | +def get_latency_report(request_id: str = "current_request") -> str: |
| 133 | + """Get latency metrics as a tool.""" |
| 134 | + metrics = tracker.get_metrics(request_id) |
| 135 | + # Format and return report |
| 136 | + return formatted_report |
| 137 | +``` |
| 138 | + |
| 139 | +## API Reference |
| 140 | + |
| 141 | +### LatencyTracker Class |
| 142 | + |
| 143 | +- `start_timer(phase, request_id)` - Start timing a phase |
| 144 | +- `end_timer(phase, request_id)` - End timing and return elapsed time |
| 145 | +- `track(phase, request_id)` - Context manager for tracking |
| 146 | +- `get_metrics(request_id)` - Get metrics for a request |
| 147 | +- `get_summary()` - Get summary of all requests |
| 148 | +- `clear(request_id)` - Clear tracking data |
| 149 | + |
| 150 | +### Metrics Format |
| 151 | + |
| 152 | +```json |
| 153 | +{ |
| 154 | + "planning": { |
| 155 | + "count": 1, |
| 156 | + "total": 1.234, |
| 157 | + "average": 1.234, |
| 158 | + "min": 1.234, |
| 159 | + "max": 1.234, |
| 160 | + "latest": 1.234 |
| 161 | + }, |
| 162 | + "tool_usage": { |
| 163 | + "count": 3, |
| 164 | + "total": 0.567, |
| 165 | + "average": 0.189, |
| 166 | + "min": 0.150, |
| 167 | + "max": 0.250, |
| 168 | + "latest": 0.167 |
| 169 | + } |
| 170 | +} |
| 171 | +``` |
| 172 | + |
| 173 | +## Examples |
| 174 | + |
| 175 | +See the following example files: |
| 176 | +- `example_latency_tracking.py` - Basic usage examples |
| 177 | +- `mcp_server_latency_example.py` - MCP server integration |
| 178 | +- `tools_with_latency.py` - Tools with built-in tracking |
| 179 | + |
| 180 | +## Benefits |
| 181 | + |
| 182 | +1. **No Core Modifications** - Works without changing PraisonAI source code |
| 183 | +2. **Flexible** - Multiple ways to integrate (tool, decorator, wrapper, context manager) |
| 184 | +3. **Thread-Safe** - Supports concurrent requests |
| 185 | +4. **Minimal Overhead** - Lightweight tracking with negligible performance impact |
| 186 | +5. **Extensible** - Easy to add custom phases and metrics |
| 187 | + |
| 188 | +## Use Cases |
| 189 | + |
| 190 | +1. **Performance Monitoring** - Track and optimize MCP server performance |
| 191 | +2. **Debugging** - Identify bottlenecks in request processing |
| 192 | +3. **SLA Monitoring** - Ensure response times meet requirements |
| 193 | +4. **Capacity Planning** - Understand resource usage patterns |
| 194 | +5. **A/B Testing** - Compare performance of different implementations |
| 195 | + |
| 196 | +## Tips |
| 197 | + |
| 198 | +1. Use unique request IDs for concurrent request tracking |
| 199 | +2. Clear old tracking data periodically to free memory |
| 200 | +3. Add tracking to critical paths only to minimize overhead |
| 201 | +4. Use phase names consistently across your application |
| 202 | +5. Consider logging metrics for long-term analysis |
| 203 | + |
| 204 | +## Integration with Existing Monitoring |
| 205 | + |
| 206 | +The metrics can be easily exported to monitoring systems: |
| 207 | + |
| 208 | +```python |
| 209 | +# Export to Prometheus |
| 210 | +def export_to_prometheus(): |
| 211 | + summary = tracker.get_summary() |
| 212 | + # Convert to Prometheus format |
| 213 | + |
| 214 | +# Export to CloudWatch |
| 215 | +def export_to_cloudwatch(): |
| 216 | + metrics = tracker.get_metrics() |
| 217 | + # Send to CloudWatch |
| 218 | + |
| 219 | +# Export to custom logging |
| 220 | +import json |
| 221 | +import logging |
| 222 | + |
| 223 | +def log_metrics(request_id): |
| 224 | + metrics = tracker.get_metrics(request_id) |
| 225 | + logging.info(f"Latency metrics: {json.dumps(metrics)}") |
| 226 | +``` |
0 commit comments