|
| 1 | +# MongoDB Integration Examples for PraisonAI Agents |
| 2 | + |
| 3 | +This directory contains comprehensive examples demonstrating how to integrate MongoDB with PraisonAI agents for memory, knowledge, and data operations. |
| 4 | + |
| 5 | +## Features |
| 6 | + |
| 7 | +MongoDB integration with PraisonAI provides: |
| 8 | + |
| 9 | +- **Memory Provider**: Use MongoDB as a persistent memory store for agents |
| 10 | +- **Knowledge Store**: Store and retrieve documents with vector search capabilities |
| 11 | +- **Tools Integration**: Perform MongoDB operations directly from agents |
| 12 | +- **Vector Search**: Leverage MongoDB Atlas Vector Search for semantic similarity |
| 13 | +- **Scalability**: Handle large datasets with MongoDB's scalable architecture |
| 14 | +- **Flexibility**: Use MongoDB as both key-value store and vector database |
| 15 | + |
| 16 | +## Prerequisites |
| 17 | + |
| 18 | +### Installation |
| 19 | + |
| 20 | +```bash |
| 21 | +# Install PraisonAI with MongoDB support |
| 22 | +pip install 'praisonaiagents[mongodb]' |
| 23 | +``` |
| 24 | + |
| 25 | +### Dependencies |
| 26 | + |
| 27 | +- **MongoDB**: Local MongoDB instance or MongoDB Atlas |
| 28 | +- **OpenAI API Key**: For embeddings and LLM operations |
| 29 | +- **Python 3.10+**: Required for PraisonAI |
| 30 | + |
| 31 | +### Environment Setup |
| 32 | + |
| 33 | +```bash |
| 34 | +# Set your OpenAI API key |
| 35 | +export OPENAI_API_KEY="your-openai-api-key" |
| 36 | + |
| 37 | +# Optional: Set MongoDB connection string |
| 38 | +export MONGODB_CONNECTION_STRING="mongodb://localhost:27017/" |
| 39 | +``` |
| 40 | + |
| 41 | +## Examples Overview |
| 42 | + |
| 43 | +### 1. [mongodb_memory_example.py](mongodb_memory_example.py) |
| 44 | + |
| 45 | +Demonstrates using MongoDB as a memory provider for PraisonAI agents. |
| 46 | + |
| 47 | +**Features:** |
| 48 | +- MongoDB as persistent memory storage |
| 49 | +- Quality scoring and filtering |
| 50 | +- Vector search for memory retrieval |
| 51 | +- Multi-session memory persistence |
| 52 | +- Memory search and context building |
| 53 | + |
| 54 | +**Usage:** |
| 55 | +```bash |
| 56 | +python mongodb_memory_example.py |
| 57 | +``` |
| 58 | + |
| 59 | +### 2. [mongodb_knowledge_example.py](mongodb_knowledge_example.py) |
| 60 | + |
| 61 | +Shows how to use MongoDB as a knowledge store with vector search capabilities. |
| 62 | + |
| 63 | +**Features:** |
| 64 | +- MongoDB as knowledge vector store |
| 65 | +- Document processing and storage |
| 66 | +- Vector search for knowledge retrieval |
| 67 | +- Knowledge-based agent interactions |
| 68 | +- File processing with MongoDB storage |
| 69 | + |
| 70 | +**Usage:** |
| 71 | +```bash |
| 72 | +python mongodb_knowledge_example.py |
| 73 | +``` |
| 74 | + |
| 75 | +### 3. [mongodb_tools_example.py](mongodb_tools_example.py) |
| 76 | + |
| 77 | +Demonstrates MongoDB tools integration for database operations. |
| 78 | + |
| 79 | +**Features:** |
| 80 | +- MongoDB CRUD operations |
| 81 | +- Vector search with embeddings |
| 82 | +- Data analysis and aggregation |
| 83 | +- Collection management |
| 84 | +- Index creation and optimization |
| 85 | + |
| 86 | +**Usage:** |
| 87 | +```bash |
| 88 | +python mongodb_tools_example.py |
| 89 | +``` |
| 90 | + |
| 91 | +### 4. [mongodb_comprehensive_example.py](mongodb_comprehensive_example.py) |
| 92 | + |
| 93 | +Complete business scenario simulation using all MongoDB features. |
| 94 | + |
| 95 | +**Features:** |
| 96 | +- Full MongoDB integration (memory + knowledge + tools) |
| 97 | +- Multi-agent business workflow |
| 98 | +- Real-world e-commerce simulation |
| 99 | +- Business intelligence analytics |
| 100 | +- Customer service automation |
| 101 | + |
| 102 | +**Usage:** |
| 103 | +```bash |
| 104 | +python mongodb_comprehensive_example.py |
| 105 | +``` |
| 106 | + |
| 107 | +## Configuration |
| 108 | + |
| 109 | +### MongoDB Memory Configuration |
| 110 | + |
| 111 | +```python |
| 112 | +mongodb_memory_config = { |
| 113 | + "provider": "mongodb", |
| 114 | + "config": { |
| 115 | + "connection_string": "mongodb://localhost:27017/", |
| 116 | + "database": "praisonai_memory", |
| 117 | + "use_vector_search": True, # Enable Atlas Vector Search |
| 118 | + "max_pool_size": 50, |
| 119 | + "min_pool_size": 10, |
| 120 | + "server_selection_timeout": 5000 |
| 121 | + } |
| 122 | +} |
| 123 | +``` |
| 124 | + |
| 125 | +### MongoDB Knowledge Configuration |
| 126 | + |
| 127 | +```python |
| 128 | +mongodb_knowledge_config = { |
| 129 | + "vector_store": { |
| 130 | + "provider": "mongodb", |
| 131 | + "config": { |
| 132 | + "connection_string": "mongodb://localhost:27017/", |
| 133 | + "database": "praisonai_knowledge", |
| 134 | + "collection": "knowledge_base", |
| 135 | + "use_vector_search": True |
| 136 | + } |
| 137 | + }, |
| 138 | + "embedder": { |
| 139 | + "provider": "openai", |
| 140 | + "config": { |
| 141 | + "model": "text-embedding-3-small" |
| 142 | + } |
| 143 | + } |
| 144 | +} |
| 145 | +``` |
| 146 | + |
| 147 | +## MongoDB Atlas Vector Search |
| 148 | + |
| 149 | +For production use with advanced vector search capabilities: |
| 150 | + |
| 151 | +### Setup |
| 152 | + |
| 153 | +1. **Create MongoDB Atlas Cluster** |
| 154 | + - Sign up for MongoDB Atlas |
| 155 | + - Create a new cluster |
| 156 | + - Get your connection string |
| 157 | + |
| 158 | +2. **Enable Vector Search** |
| 159 | + - Create vector search indexes |
| 160 | + - Configure embedding dimensions (1536 for OpenAI) |
| 161 | + - Set similarity metric (cosine, euclidean, dotProduct) |
| 162 | + |
| 163 | +3. **Update Connection String** |
| 164 | + ```python |
| 165 | + "connection_string": "mongodb+srv://username:password@cluster.mongodb.net/" |
| 166 | + ``` |
| 167 | + |
| 168 | +### Vector Search Index Creation |
| 169 | + |
| 170 | +```python |
| 171 | +# Vector search index definition |
| 172 | +{ |
| 173 | + "mappings": { |
| 174 | + "dynamic": True, |
| 175 | + "fields": { |
| 176 | + "embedding": { |
| 177 | + "type": "knnVector", |
| 178 | + "dimensions": 1536, |
| 179 | + "similarity": "cosine" |
| 180 | + } |
| 181 | + } |
| 182 | + } |
| 183 | +} |
| 184 | +``` |
| 185 | + |
| 186 | +## Best Practices |
| 187 | + |
| 188 | +### 1. Connection Management |
| 189 | + |
| 190 | +```python |
| 191 | +# Use connection pooling |
| 192 | +mongodb_config = { |
| 193 | + "connection_string": "mongodb://localhost:27017/", |
| 194 | + "max_pool_size": 50, |
| 195 | + "min_pool_size": 10, |
| 196 | + "maxIdleTimeMS": 30000, |
| 197 | + "serverSelectionTimeoutMS": 5000 |
| 198 | +} |
| 199 | +``` |
| 200 | + |
| 201 | +### 2. Indexing Strategy |
| 202 | + |
| 203 | +```python |
| 204 | +# Create appropriate indexes |
| 205 | +collection.create_index([("content", "text")]) # Text search |
| 206 | +collection.create_index([("created_at", -1)]) # Time-based queries |
| 207 | +collection.create_index([("metadata.category", 1)]) # Category filtering |
| 208 | +``` |
| 209 | + |
| 210 | +### 3. Error Handling |
| 211 | + |
| 212 | +```python |
| 213 | +try: |
| 214 | + # MongoDB operations |
| 215 | + result = collection.insert_one(document) |
| 216 | +except PyMongoError as e: |
| 217 | + logger.error(f"MongoDB error: {e}") |
| 218 | + # Implement fallback strategy |
| 219 | +``` |
| 220 | + |
| 221 | +### 4. Data Validation |
| 222 | + |
| 223 | +```python |
| 224 | +# Validate data before storage |
| 225 | +def validate_document(doc): |
| 226 | + required_fields = ["content", "metadata", "created_at"] |
| 227 | + return all(field in doc for field in required_fields) |
| 228 | +``` |
| 229 | + |
| 230 | +## Performance Considerations |
| 231 | + |
| 232 | +### 1. Indexing |
| 233 | + |
| 234 | +- Create indexes on frequently queried fields |
| 235 | +- Use compound indexes for complex queries |
| 236 | +- Monitor index usage with MongoDB profiler |
| 237 | + |
| 238 | +### 2. Vector Search Optimization |
| 239 | + |
| 240 | +- Use appropriate vector dimensions |
| 241 | +- Optimize numCandidates parameter |
| 242 | +- Consider filtering to reduce search space |
| 243 | + |
| 244 | +### 3. Connection Pooling |
| 245 | + |
| 246 | +- Configure appropriate pool sizes |
| 247 | +- Use connection pooling for high-concurrency scenarios |
| 248 | +- Monitor connection metrics |
| 249 | + |
| 250 | +## Troubleshooting |
| 251 | + |
| 252 | +### Common Issues |
| 253 | + |
| 254 | +1. **Connection Errors** |
| 255 | + - Check MongoDB server is running |
| 256 | + - Verify connection string format |
| 257 | + - Ensure network connectivity |
| 258 | + |
| 259 | +2. **Vector Search Issues** |
| 260 | + - Verify Atlas Vector Search indexes exist |
| 261 | + - Check embedding dimensions match |
| 262 | + - Ensure proper index configuration |
| 263 | + |
| 264 | +3. **Memory Issues** |
| 265 | + - Monitor memory usage with large datasets |
| 266 | + - Use appropriate batch sizes |
| 267 | + - Consider data pagination |
| 268 | + |
| 269 | +### Debugging |
| 270 | + |
| 271 | +```python |
| 272 | +# Enable detailed logging |
| 273 | +import logging |
| 274 | +logging.basicConfig(level=logging.DEBUG) |
| 275 | + |
| 276 | +# Monitor MongoDB operations |
| 277 | +from pymongo import monitoring |
| 278 | +monitoring.register(CommandLogger()) |
| 279 | +``` |
| 280 | + |
| 281 | +## Production Deployment |
| 282 | + |
| 283 | +### 1. Security |
| 284 | + |
| 285 | +```python |
| 286 | +# Use authentication |
| 287 | +connection_string = "mongodb://username:password@host:port/database" |
| 288 | + |
| 289 | +# Enable SSL/TLS |
| 290 | +client = MongoClient(connection_string, tls=True) |
| 291 | +``` |
| 292 | + |
| 293 | +### 2. Monitoring |
| 294 | + |
| 295 | +- Use MongoDB Atlas monitoring |
| 296 | +- Implement application-level metrics |
| 297 | +- Set up alerting for critical issues |
| 298 | + |
| 299 | +### 3. Backup and Recovery |
| 300 | + |
| 301 | +- Configure automated backups |
| 302 | +- Test restore procedures |
| 303 | +- Implement disaster recovery plans |
| 304 | + |
| 305 | +## Support |
| 306 | + |
| 307 | +For additional support: |
| 308 | + |
| 309 | +- [PraisonAI Documentation](https://docs.praisonai.com) |
| 310 | +- [MongoDB Documentation](https://docs.mongodb.com) |
| 311 | +- [MongoDB Atlas Vector Search](https://docs.atlas.mongodb.com/atlas-vector-search/) |
| 312 | + |
| 313 | +## License |
| 314 | + |
| 315 | +These examples are provided under the same license as PraisonAI. |
0 commit comments