-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_modelnet40_edgecnn.py
508 lines (440 loc) · 22.8 KB
/
train_modelnet40_edgecnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
'''
Read partial view txt files of 3D models, remove files<1050 points
'''
import argparse
import math
from datetime import datetime
import h5py
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
import time
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
BASE_DIR = os.path.dirname(__file__)
sys.path.append(BASE_DIR)
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, '../utils'))
sys.path.append(os.path.join(ROOT_DIR, 'tf_ops/grouping'))
from tf_grouping import query_ball_point, group_point, knn_point
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
from plot_cube import plot_cube
from sklearn.metrics import mean_squared_error
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
from plot_cube import plot_cube
from eul2rot import euler2rotm
from scipy import spatial
from sklearn.neighbors import NearestNeighbors
import provider
import tf_util
import modelnet40_dataset_orig
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from itertools import cycle
from sklearn.metrics import confusion_matrix
epsilon = sys.float_info.epsilon
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='pointnet2_cls_edge', help='Model name [default: pointnet2_cls_edge]')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=5, help='Epoch to run [default: 251]')
parser.add_argument('--model_path', default='log/model_orig_edge_cnn_rgbd.ckpt', help='model checkpoint file path [default: log/model.ckpt]')
parser.add_argument('--batch_size', type=int, default=16, help='Batch Size during training [default: 16]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
parser.add_argument('--normal', action='store_true', help='Whether to use normal information')
FLAGS = parser.parse_args()
NUM_CLASSES = 40
NUM_POSE = 7
NUM_ANCHOR = 4
NUM_CHANNELS = 3
EPOCH_CNT = 0
prec = np.zeros((30,2), dtype=np.float32)
rec = np.zeros((30,2), dtype=np.float32)
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
MODEL_PATH = FLAGS.model_path
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(ROOT_DIR, 'models', FLAGS.model+'.py')
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
HOSTNAME = socket.gethostname()
# Shapenet official train/test split
DATA_PATH = os.path.join('/home/mariam/pointnet2/data/ModelNet40/')
FLAGS.normal = False
TRAIN_DATASET = modelnet40_dataset_rgbd.ModelNetDataset(root=DATA_PATH, npoints=NUM_POINT, split='train', normal_channel=FLAGS.normal, batch_size=BATCH_SIZE)
TEST_DATASET = modelnet40_dataset_rgbd.ModelNetDataset(root=DATA_PATH, npoints=NUM_POINT, split='test', normal_channel=FLAGS.normal, batch_size=BATCH_SIZE)
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def softmax(z):
assert len(z.shape) == 2
s = np.max(z, axis=1)
s = s[:, np.newaxis] # necessary step to do broadcasting
e_x = np.exp(z - s)
div = np.sum(e_x, axis=1)
div = div[:, np.newaxis] # dito
return e_x / div
def nearest_neighbors(values, all_values, nbr_neighbors=1):
nn = NearestNeighbors(nbr_neighbors, metric='euclidean', algorithm='brute').fit(all_values)
dists, idxs = nn.kneighbors(values)
return dists
def train():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl_class = MODEL.placeholder_inputs_class(BATCH_SIZE, NUM_POINT)
labels_pl_pose = MODEL.placeholder_inputs_pose(BATCH_SIZE, NUM_POINT)
labels_pl_anchor = MODEL.placeholder_inputs_anchor(BATCH_SIZE, NUM_POINT)
labels_pl_edge = MODEL.placeholder_inputs_edge_cnn(BATCH_SIZE)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter
# for you every time it trains.
batch = tf.get_variable('batch', [],
initializer=tf.constant_initializer(0), trainable=False)
bn_decay = get_bn_decay(batch)
#tf.summary.scalar('bn_decay', bn_decay)
# Get model and loss
pred_class, pred_pose, pred_anchor, end_points = MODEL.get_model_edge_cnn(pointclouds_pl, labels_pl_edge, is_training_pl, bn_decay=bn_decay)
MODEL.get_loss_class(pred_class, labels_pl_class, end_points)
losses_class = tf.get_collection('losses_class')
total_loss_class = tf.add_n(losses_class, name='total_loss_class')
tf.summary.scalar('total_loss_class', total_loss_class)
for l in losses_class + [total_loss_class]:
tf.summary.scalar(l.op.name, l)
correct_class = tf.equal(tf.argmax(pred_class, 1), tf.to_int64(labels_pl_class))
accuracy_class = tf.reduce_sum(tf.cast(correct_class, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy_class', accuracy_class)
MODEL.get_loss_pose(pred_pose,labels_pl_pose, pointclouds_pl,BATCH_SIZE)
losses_pose = tf.get_collection('losses_pose')
total_loss_pose = tf.add_n(losses_pose, name='losses_pose')
tf.summary.scalar('total_loss_pose', total_loss_pose)
for l in losses_pose + [total_loss_pose]:
tf.summary.scalar(l.op.name, l)
accuracy = tf.reduce_sum(tf.cast(total_loss_pose, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy_pose', accuracy)
MODEL.get_loss_anchor(pred_anchor, labels_pl_anchor)
losses_class_anchor = tf.get_collection('losses_anchor')
total_loss_anchor = tf.add_n(losses_class_anchor, name='total_loss_anchor')
tf.summary.scalar('total_loss_anchor', total_loss_anchor)
for l in losses_class_anchor + [total_loss_anchor]:
tf.summary.scalar(l.op.name, l)
correct_anchor = tf.equal(tf.argmax(pred_anchor, 1), tf.to_int64(labels_pl_anchor))
accuracy_anchor = tf.reduce_sum(tf.cast(correct_anchor, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy_anchor', accuracy_anchor)
print ("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
total_loss = 1.5*(total_loss_class) + (total_loss_pose + total_loss_anchor)
train_op = optimizer.minimize(total_loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
# Init variables
init = tf.global_variables_initializer()
sess.run(init)
# Restore trained graph
#saver.restore(sess, MODEL_PATH)
ops = {'pointclouds_pl': pointclouds_pl,
'is_training_pl': is_training_pl,
'labels_pl_class': labels_pl_class,
'labels_pl_pose': labels_pl_pose,
'labels_pl_anchor': labels_pl_anchor,
'labels_pl_edge': labels_pl_edge,
'pred_pose': pred_pose,
'pred_class': pred_class,
'pred_anchor': pred_anchor,
'loss_class': total_loss_class,
'loss_pose': total_loss_pose,
'loss_anchor': total_loss_anchor,
'train_op': train_op,
'merged': merged,
'step': batch,
'end_points': end_points}
best_acc = -1
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
eval_one_epoch(sess, ops, test_writer)
#Save the variables to disk.
if epoch % 10 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR, "model_orig_edge_cnn_sunrgbd.ckpt"))#rgbd_nonscaled/sum (for edge cnn on ModelNet40 orig)
log_string("Model saved in file: %s" % save_path)
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
log_string(str(datetime.now()))
# Make sure batch data is of same size
cur_batch_data = np.zeros((BATCH_SIZE,NUM_POINT,NUM_CHANNELS))#TRAIN_DATASET.num_channel()
cur_batch_label_class = np.zeros((BATCH_SIZE), dtype=np.int32)
cur_batch_label_pose = np.zeros((BATCH_SIZE,7), dtype=np.float32)
cur_batch_label_anchor = np.zeros((BATCH_SIZE), dtype=np.int32)
cur_batch_label_edge = np.zeros((BATCH_SIZE,32,32,3))
total_correct = 0
total_correct_anchor = 0
total_correct_edge = 0
total_seen = 0
total_seen_anchor = 0
loss_sum_pose = 0
loss_sum_class = 0
loss_sum_anchor = 0
loss_sum_edge = 0
batch_idx = 0
batch_class = 0
batch_pose = 0
bsize = 32
correct_pose = 0
total_pose = 0
total_pose_add = 0
total_seen_pose = 0
total_pose_L1 = 0
total_diff_pose = 0
while TRAIN_DATASET.has_next_batch():
batch_data,batch_label_class,batch_label_pose,batch_label_anchor,batch_label_edge,batch_label_id = TRAIN_DATASET.next_batch(augment=False,data='train')
bsize = batch_data.shape[0]
cur_batch_data[0:bsize,...] = batch_data[:,:,0:NUM_CHANNELS]
cur_batch_label_class[0:bsize] = batch_label_class
cur_batch_label_pose[0:bsize,:] = batch_label_pose
cur_batch_label_anchor[0:bsize] = batch_label_anchor
cur_batch_label_edge[0:bsize,...] = batch_label_edge[:,:]
#Run session for classification
feed_dict = {ops['pointclouds_pl']: cur_batch_data,
ops['labels_pl_class']: cur_batch_label_class,
ops['labels_pl_pose']: cur_batch_label_pose,
ops['labels_pl_anchor']: cur_batch_label_anchor,
ops['labels_pl_edge']: cur_batch_label_edge,
ops['is_training_pl']: is_training,}
summary_class, step_class, _, loss_val_class, pred_val_class,loss_val_pose,pred_val_pose,loss_val_anchor,pred_val_anchor = sess.run([ops['merged'], ops['step'],ops['train_op'], ops['loss_class'], ops['pred_class'], ops['loss_pose'],ops['pred_pose'], ops['loss_anchor'],ops['pred_anchor']], feed_dict=feed_dict)
train_writer.add_summary(summary_class, step_class)
scores = softmax(pred_val_class)
pred_val_class = np.argmax(pred_val_class, 1)
correct = np.sum(pred_val_class[0:bsize] == batch_label_class[0:bsize])
total_correct += correct
total_seen += bsize
loss_sum_class += loss_val_class
loss_sum_pose += loss_val_pose
Groundtruth_pose = np.zeros((bsize,7), dtype=np.float32)
Groundtruth_pose[:,0:3] = 0.01
Groundtruth_pose[:,3:7] = 0.01
diff = np.abs(batch_label_pose[0:bsize,:]-pred_val_pose[0:bsize,:])
diff1 = np.mean(diff,axis=0)
pose = (diff<Groundtruth_pose).astype(float)
correct_pose = np.sum((np.sum(pose,1)/7))
total_pose += correct_pose
total_pose_L1 += correct_pose
total_seen_pose += bsize
total_diff_pose += diff1
scores_anchor = softmax(pred_val_anchor)
pred_val_anchor = np.argmax(pred_val_anchor, 1)
correct_anchor = np.sum(pred_val_anchor[0:bsize] == batch_label_anchor[0:bsize])
total_correct_anchor += correct_anchor
total_seen_anchor += bsize
loss_sum_anchor += loss_val_anchor
if ((batch_idx+1)%100 == 0) :
log_string(' ---- batch: %03d ----' % (batch_idx+1))
log_string('mean loss classification: %f' % (loss_sum_class / 500))
log_string('accuracy classification: %f' % (total_correct / float(total_seen)))
#log_string('execution time for 8 batch size: %f' %(float(duration)))
log_string('accuracy regression L1: %f' %(float(total_pose_L1)/total_seen_pose))
log_string('accuracy regression ADD: %f' %(float(total_pose)/500))
log_string('loss for each parameter: %f %f %f \n %f %f %f \n %f' %(float(total_diff_pose[0]/500),float(total_diff_pose[1]/500),float(total_diff_pose[2]/500),float(total_diff_pose[3]/500),float(total_diff_pose[4]/500),float(total_diff_pose[5]/500),float(total_diff_pose[6]/500)))
log_string('mean loss: %f' % (loss_sum_pose / 500))
log_string('mean loss anchor classification: %f' % (loss_sum_anchor / 500))
log_string('accuracy anchor classification: %f' % (total_correct_anchor / float(total_seen_anchor)))
total_correct_anchor = 0
total_seen_anchor = 0
loss_sum_anchor = 0
total_correct_edge = 0
total_correct = 0
total_seen = 0
loss_sum_class = 0
total_pose = 0
loss_sum_pose = 0
total_seen_pose = 0
total_pose_L1 = 0
total_diff_pose = 0
batch_idx += 1
TRAIN_DATASET.reset()
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
# Make sure batch data is of same size
cur_batch_data = np.zeros((BATCH_SIZE,NUM_POINT,NUM_CHANNELS))
cur_batch_label_class = np.zeros((BATCH_SIZE), dtype=np.int32)
cur_batch_label_pose = np.zeros((BATCH_SIZE,7), dtype=np.float32)
cur_batch_label_anchor = np.zeros((BATCH_SIZE), dtype=np.int32)
cur_batch_label_edge = np.zeros((BATCH_SIZE,32,32,3), dtype=np.int32)
total_correct = 0
total_correct_anchor = 0
total_correct_edge = 0
total_anchor = 0
total_edge = 0
total_seen = 0
total_seen_anchor = 0
loss_sum_pose = 0
loss_sum_class = 0
loss_sum_anchor = 0
loss_sum_edge = 0
batch_idx = 0
batch_class = 0
batch_pose = 0
bsize = 32
correct_pose = 0
total_pose = 0
total_pose_add = 0
total_seen_pose = 0
total_pose_L1 = 0
total_diff_pose = 0
shape_ious = []
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
total_seen_anchor = [0 for _ in range(NUM_ANCHOR)]
total_correct_anchor = [0 for _ in range(NUM_ANCHOR)]
total_seen_pose = 0
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))
results_class = "/home/mariam/pointnet2/data/sunrgbd/prediction_class_edge_sunrgbd.txt"#rgbd_4views
results_bbox = "/home/mariam/pointnet2/data/sunrgbd/prediction_bbox_edge_sunrgbd.txt"#rgbd_4views
f_class = open(results_class,"a")
f_bbox = open(results_bbox,"a")
while TEST_DATASET.has_next_batch():
batch_data,batch_label_class,batch_label_pose,batch_label_anchor,batch_label_edge,batch_label_id = TEST_DATASET.next_batch(augment=False,data='test')
# for the last batch in the epoch, the bsize:end are from last batch
bsize = batch_data.shape[0]
cur_batch_data[0:bsize,...] = batch_data[:,:,0:NUM_CHANNELS]
cur_batch_label_class[0:bsize] = batch_label_class
cur_batch_label_pose[0:bsize,:] = batch_label_pose
cur_batch_label_anchor[0:bsize] = batch_label_anchor
cur_batch_label_edge[0:bsize,...] = batch_label_edge[:,:,:]
#Run session for classification
feed_dict = {ops['pointclouds_pl']: cur_batch_data,
ops['labels_pl_class']: cur_batch_label_class,
ops['labels_pl_pose']: cur_batch_label_pose,
ops['labels_pl_anchor']: cur_batch_label_anchor,
ops['labels_pl_edge']: cur_batch_label_edge,
ops['is_training_pl']: is_training,}
#start_time = time.time()
summary_class, step_class, _, loss_val_class, pred_val_class,loss_val_pose,pred_val_pose,loss_val_anchor,pred_val_anchor = sess.run([ops['merged'], ops['step'],ops['train_op'], ops['loss_class'], ops['pred_class'], ops['loss_pose'],ops['pred_pose'], ops['loss_anchor'],ops['pred_anchor']], feed_dict=feed_dict)
#duration = time.time() - start_time
#print(duration)
test_writer.add_summary(summary_class, step_class)
scores = softmax(pred_val_class)
pred_val_class = np.argmax(pred_val_class, 1)
correct = np.sum(pred_val_class[0:bsize] == batch_label_class[0:bsize])
total_correct += correct
total_seen += bsize
loss_sum_class += loss_val_class
loss_sum_pose += loss_val_pose
Groundtruth_pose = np.zeros((bsize,7), dtype=np.float32)
Groundtruth_pose[:,0:3] = 0.01
Groundtruth_pose[:,3:7] = 0.01
diff = np.abs(batch_label_pose[0:bsize,:]-pred_val_pose[0:bsize,:])
diff1 = np.mean(diff,axis=0)
pose = (diff<Groundtruth_pose).astype(float)
correct_pose = np.sum((np.sum(pose,1)/7))
total_pose += correct_pose
total_pose_L1 += correct_pose
total_seen_pose += bsize
total_diff_pose += diff1
scores_anchor = softmax(pred_val_anchor)
pred_val_anchor = np.argmax(pred_val_anchor, 1)
correct_anchor = np.sum(pred_val_anchor[0:bsize] == batch_label_anchor[0:bsize])
total_anchor += correct_anchor
loss_sum_anchor += loss_val_anchor
for i in range(0, bsize):
l = batch_label_class[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val_class[i] == l)
if ((EPOCH_CNT+1)%1 == 0):
for l in range (bsize):
f_class.write("%i,%i,%i,%i,%i,%i,%i\n" %(EPOCH_CNT,batch_label_id[l,0],batch_label_id[l,1],pred_val_class[l], batch_label_class[l],pred_val_anchor[l], batch_label_anchor[l]))
f_bbox.write("%i,%i,%i,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n" %(EPOCH_CNT,batch_label_id[l,0],batch_label_id[l,1],pred_val_pose[l,0],pred_val_pose[l,1],pred_val_pose[l,2],pred_val_pose[l,3],pred_val_pose[l,4],pred_val_pose[l,5],pred_val_pose[l,6],batch_label_pose[l,0],batch_label_pose[l,1],batch_label_pose[l,2],batch_label_pose[l,3],batch_label_pose[l,4],batch_label_pose[l,5],batch_label_pose[l,6]))
batch_idx += 1
f_class.close()
f_bbox.close()
log_string('batch id: %f' %(float(batch_idx+1)))
log_string('loss for each parameter: %f %f %f \n %f %f %f \n %f' %(float(total_diff_pose[0]/float(batch_idx+1)),float(total_diff_pose[1]/float(batch_idx+1)),float(total_diff_pose[2]/float(batch_idx+1)),float(total_diff_pose[3]/float(batch_idx+1)),float(total_diff_pose[4]/float(batch_idx+1)),float(total_diff_pose[5]/float(batch_idx+1)),float(total_diff_pose[6]/float(batch_idx+1))))
log_string('eval mean loss class: %f' % (loss_sum_class / float(batch_idx+1)))
log_string('eval accuracy class: %f'% (total_correct / float(total_seen)))
log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float))))
#log_string('eval mean loss anchor: %f' % (loss_sum_anchor / float(batch_idx+1)))
#log_string('eval accuracy anchor: %f'% (total_anchor / float(total_seen)))
#log_string('eval avg anchor acc: %f' % (np.mean(np.array(total_correct_anchor)/np.array(total_seen_anchor,dtype=np.float))))
for k in range(0,NUM_CLASSES):
if(total_seen_class[k]>0):
log_string('class : %f '% (k))
log_string('class accuracy: %f ' % (np.array(total_correct_class[k]/total_seen_class[k],dtype=np.float)))
#for k in range(0,NUM_ANCHOR):
# log_string('anchor class : %f '% (k))
# log_string('anchor accuracy: %f ' % (np.array(total_correct_anchor[k]/total_seen_anchor[k],dtype=np.float)))
print(EPOCH_CNT)
EPOCH_CNT += 1
TEST_DATASET.reset()
#return total_correct/float(total_seen)
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
train()
LOG_FOUT.close()