forked from aleju/mario-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAE.lua
185 lines (149 loc) · 6.74 KB
/
VAE.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
-- Old VAE stuff, ended up not being used.
-- Most of the code is adapted from https://github.com/y0ast/VAE-Torch .
require 'torch'
require 'nn'
require 'nngraph'
require 'layers.GaussianCriterion'
require 'layers.KLDCriterion'
require 'layers.Sampler'
local VAE = {}
VAE.continuous = false
function VAE.createVAE()
local input_size = IMG_DIMENSIONS_AE[1] * IMG_DIMENSIONS_AE[2] * IMG_DIMENSIONS_AE[3]
local hidden_layer_size = 1024
local latent_variable_size = 512
local encoder = VAE.get_encoder(input_size, hidden_layer_size, latent_variable_size)
local decoder = VAE.get_decoder(input_size, hidden_layer_size, latent_variable_size, VAE.continuous)
local input = nn.Identity()()
local mean, log_var = encoder(input):split(2)
local z = nn.Sampler()({mean, log_var})
local reconstruction = decoder(z)
local model = nn.gModule({input},{reconstruction, mean, log_var})
local criterion_reconstruction = nn.BCECriterion()
criterion_reconstruction.sizeAverage = false
local criterion_latent = nn.KLDCriterion()
local parameters, gradients = model:getParameters()
return model, criterion_latent, criterion_reconstruction, parameters, gradients
end
function VAE.get_encoder(input_size, hidden_layer_size, latent_variable_size)
-- The Encoder
local encoder = nn.Sequential()
if GPU then
encoder:add(nn.Copy('torch.FloatTensor', 'torch.CudaTensor', true, true))
end
encoder:add(nn.SpatialConvolution(IMG_DIMENSIONS_AE[1], 8, 5, 5, 2, 2, (5-1)/2, (5-1)/2))
encoder:add(nn.SpatialBatchNormalization(8))
encoder:add(nn.LeakyReLU(0.2, true))
encoder:add(nn.SpatialConvolution(8, 16, 5, 5, 2, 2, (5-1)/2, (5-1)/2))
encoder:add(nn.SpatialBatchNormalization(16))
encoder:add(nn.LeakyReLU(0.2, true))
encoder:add(nn.SpatialConvolution(16, 32, 5, 5, 2, 2, (5-1)/2, (5-1)/2))
encoder:add(nn.SpatialBatchNormalization(32))
encoder:add(nn.LeakyReLU(0.2, true))
encoder:add(nn.SpatialConvolution(32, 64, 5, 5, 2, 2, (5-1)/2, (5-1)/2))
encoder:add(nn.SpatialBatchNormalization(64))
encoder:add(nn.LeakyReLU(0.2, true))
--encoder:add(nn.Reshape(input_size))
local outSize = 64 * IMG_DIMENSIONS_AE[2]/2/2/2/2 * IMG_DIMENSIONS_AE[3]/2/2/2/2
encoder:add(nn.Reshape(outSize))
--encoder:add(nn.Linear(input_size, hidden_layer_size))
encoder:add(nn.Linear(outSize, hidden_layer_size))
encoder:add(nn.BatchNormalization(hidden_layer_size))
encoder:add(nn.LeakyReLU(0.2, true))
--if GPU then
-- encoder:add(nn.Copy('torch.CudaTensor', 'torch.FloatTensor', true, true))
--end
mean_logvar = nn.ConcatTable()
if GPU then
mean_logvar:add(nn.Sequential():add(nn.Linear(hidden_layer_size, latent_variable_size)):add(nn.Copy('torch.CudaTensor', 'torch.FloatTensor', true, true)))
mean_logvar:add(nn.Sequential():add(nn.Linear(hidden_layer_size, latent_variable_size)):add(nn.Copy('torch.CudaTensor', 'torch.FloatTensor', true, true)))
else
mean_logvar:add(nn.Linear(hidden_layer_size, latent_variable_size))
mean_logvar:add(nn.Linear(hidden_layer_size, latent_variable_size))
end
encoder:add(mean_logvar)
if GPU then
encoder:cuda()
end
return encoder
end
function VAE.get_decoder(input_size, hidden_layer_size, latent_variable_size, continuous)
--local c, h, w = unpack(IMG_DIMENSIONS)
-- The Decoder
local decoder = nn.Sequential()
if GPU then
decoder:add(nn.Copy('torch.FloatTensor', 'torch.CudaTensor', true, true))
end
decoder:add(nn.Linear(latent_variable_size, hidden_layer_size))
decoder:add(nn.BatchNormalization(hidden_layer_size))
decoder:add(nn.LeakyReLU(0.2, true))
if continuous then
mean_logvar = nn.ConcatTable()
mean_logvar:add(nn.Linear(hidden_layer_size, input_size))
mean_logvar:add(nn.Linear(hidden_layer_size, input_size))
decoder:add(mean_logvar)
else
decoder:add(nn.Linear(hidden_layer_size, input_size/2/2))
decoder:add(nn.Sigmoid(true))
decoder:add(nn.Reshape(IMG_DIMENSIONS_AE[1], IMG_DIMENSIONS_AE[2]/2, IMG_DIMENSIONS_AE[3]/2))
decoder:add(nn.SpatialUpSamplingNearest(2))
--[[
local c, h, w = unpack(IMG_DIMENSIONS)
decoder:add(nn.Linear(latent_variable_size, 16*h/2/2*w/2/2))
decoder:add(nn.ReLU(true))
decoder:add(nn.Reshape(16, h/2/2, w/2/2)) -- 16x32
decoder:add(nn.SpatialUpSamplingNearest(2)) -- 32x64
decoder:add(nn.SpatialConvolution(16, 32, 3, 3, 1, 1, (3-1)/2, (3-1)/2))
decoder:add(nn.ReLU(true))
decoder:add(nn.SpatialUpSamplingNearest(2)) -- 64x128
decoder:add(nn.SpatialConvolution(32, 1, 3, 3, 1, 1, (3-1)/2, (3-1)/2))
decoder:add(nn.Sigmoid(true))
--]]
end
if GPU then
decoder:add(nn.Copy('torch.CudaTensor', 'torch.FloatTensor', true, true))
decoder:cuda()
end
return decoder
end
function VAE.train(inputs, model, criterionLatent, criterionReconstruction, parameters, gradParameters, optconfig, optstate)
local opfunc = function(x)
assert(inputs ~= nil)
assert(model ~= nil)
assert(criterionLatent ~= nil)
assert(criterionReconstruction ~= nil)
assert(parameters ~= nil)
assert(gradParameters ~= nil)
assert(optconfig ~= nil)
assert(optstate ~= nil)
if x ~= parameters then
parameters:copy(x)
end
model:zeroGradParameters()
local reconstruction, reconstruction_var, mean, log_var
if VAE.continuous then
reconstruction, reconstruction_var, mean, log_var = unpack(model:forward(inputs))
reconstruction = {reconstruction, reconstruction_var}
else
reconstruction, mean, log_var = unpack(model:forward(inputs))
end
local err = criterionReconstruction:forward(reconstruction, inputs)
local df_dw = criterionReconstruction:backward(reconstruction, inputs)
local KLDerr = criterionLatent:forward(mean, log_var)
local dKLD_dmu, dKLD_dlog_var = unpack(criterionLatent:backward(mean, log_var))
if VAE.continuous then
error_grads = {df_dw[1], df_dw[2], dKLD_dmu, dKLD_dlog_var}
else
error_grads = {df_dw, dKLD_dmu, dKLD_dlog_var}
end
model:backward(inputs, error_grads)
local batchlowerbound = err + KLDerr
print(string.format("[BATCH AE] lowerbound=%.8f", batchlowerbound))
util.displayBatch(inputs, 10, "Training images for AE (input)")
util.displayBatch(reconstruction, 11, "Training images for AE (output)")
return batchlowerbound, gradParameters
end
local x, batchlowerbound = optim.adam(opfunc, parameters, optconfig, optstate)
return batchlowerbound
end
return VAE