|
164 | 164 | "metadata": {}, |
165 | 165 | "outputs": [], |
166 | 166 | "source": [ |
167 | | - "chips = export_training_data(planet_mosaic_data, well_pads, \"PNG\", {\"x\":448,\"y\":448}, {\"x\":224,\"y\":224}, \n", |
168 | | - " \"PASCAL_VOC_rectangles\", 75, \"planetdemo\")" |
| 167 | + "chips = export_training_data(input_raster=planet_mosaic_data,\n", |
| 168 | + " input_class_data=well_pads,\n", |
| 169 | + " chip_format=\"PNG\",\n", |
| 170 | + " tile_size={\"x\":448,\"y\":448},\n", |
| 171 | + " stride_size={\"x\":224,\"y\":224},\n", |
| 172 | + " metadata_format=\"PASCAL_VOC_rectangles\",\n", |
| 173 | + " classvalue_field='pad_type',\n", |
| 174 | + " buffer_radius=75,\n", |
| 175 | + " output_location=\"/rasterStores/rasterstorename/wellpaddata\")" |
169 | 176 | ] |
170 | 177 | }, |
171 | 178 | { |
|
187 | 194 | "source": [ |
188 | 195 | "from arcgis.learn import prepare_data\n", |
189 | 196 | "\n", |
190 | | - "data = prepare_data('/arcgis/directories/rasterstore/planetdemo', {1: ' Pad'})" |
| 197 | + "data = prepare_data('/rasterStores/rasterstorename/wellpaddata', {1: ' Pad'})" |
191 | 198 | ] |
192 | 199 | }, |
193 | 200 | { |
|
453 | 460 | "outputs": [], |
454 | 461 | "source": [ |
455 | 462 | "# save the trained model\n", |
456 | | - "ssd.save('wellpad_planet_model')" |
| 463 | + "ssd.save('wellpad_planet_model', publish=True)" |
457 | 464 | ] |
458 | 465 | }, |
459 | 466 | { |
460 | 467 | "cell_type": "markdown", |
461 | 468 | "metadata": {}, |
462 | 469 | "source": [ |
463 | | - "## Deploy trained model" |
| 470 | + "Once a model has been trained, it can be added to ArcGIS Enterprise as a deep learning package by passing ``publish=True`` parameter." |
464 | 471 | ] |
465 | 472 | }, |
466 | 473 | { |
467 | 474 | "cell_type": "markdown", |
468 | 475 | "metadata": {}, |
469 | 476 | "source": [ |
470 | | - "Once a model has been trained, it can be added to ArcGIS Enterprise as a deep learning package." |
471 | | - ] |
472 | | - }, |
473 | | - { |
474 | | - "cell_type": "code", |
475 | | - "execution_count": 13, |
476 | | - "metadata": {}, |
477 | | - "outputs": [], |
478 | | - "source": [ |
479 | | - "# Upload as first class item on agol or portal as a deep learning package \n", |
480 | | - "trained_model = '/arcgis/directories/rasterstore/planetdemo/models/wellpad_model_planet_2501/wellpad_model_planet_2501.zip'" |
481 | | - ] |
482 | | - }, |
483 | | - { |
484 | | - "cell_type": "code", |
485 | | - "execution_count": 14, |
486 | | - "metadata": {}, |
487 | | - "outputs": [], |
488 | | - "source": [ |
489 | | - "model_package = gis.content.add(item_properties={\"type\":\"Deep Learning Package\",\"typeKeywords\":\"Deep Learning, Raster\",\n", |
490 | | - " \"title\":\"Well Pad Detection Model Planet 2501\",\n", |
491 | | - " \"tags\":\"deeplearning\", 'overwrite':'True'}, data=trained_model)\n", |
492 | | - "# Or publish using:\n", |
493 | | - "# ssd.save('Well Pad Detection Model Planet 2501', publish=True, gis=gis)" |
| 477 | + "## Model management" |
494 | 478 | ] |
495 | 479 | }, |
496 | 480 | { |
|
528 | 512 | } |
529 | 513 | ], |
530 | 514 | "source": [ |
| 515 | + "model_package = gis.content.get('id=32cb1df2834943f7a6ff3ab461aa9352')\n", |
531 | 516 | "model_package" |
532 | 517 | ] |
533 | 518 | }, |
534 | | - { |
535 | | - "cell_type": "markdown", |
536 | | - "metadata": {}, |
537 | | - "source": [ |
538 | | - "## Model management" |
539 | | - ] |
540 | | - }, |
541 | 519 | { |
542 | 520 | "cell_type": "markdown", |
543 | 521 | "metadata": {}, |
|
732 | 710 | "name": "python", |
733 | 711 | "nbconvert_exporter": "python", |
734 | 712 | "pygments_lexer": "ipython3", |
735 | | - "version": "3.6.10" |
| 713 | + "version": "3.7.11" |
736 | 714 | }, |
737 | 715 | "toc": { |
738 | 716 | "base_numbering": 1, |
|
0 commit comments