|
| 1 | + |
| 2 | +------------------------------------------------ |
| 3 | + |
| 4 | +The following information needs to be associated with every node - |
| 5 | + |
| 6 | +Maximum, |
| 7 | +Maximum two-sum. |
| 8 | + |
| 9 | +For convenience, Max two-sum(leaf) = leaf. |
| 10 | + |
| 11 | +------------------------------------------------------ |
| 12 | + |
| 13 | +Here's how it's built. |
| 14 | + |
| 15 | +max(n) = max{ max(2n), max(2n + 1) } |
| 16 | +max sum(n) = max{ max sum(2n), max sum(2n + 1), max(2n), max(2n + 1) } |
| 17 | + |
| 18 | +void build(int node, int start, int end) |
| 19 | +{ |
| 20 | + if(start == end) |
| 21 | + { |
| 22 | + max_tree[node] = max_sum_tree[node] = element[start]; |
| 23 | + return; |
| 24 | + } |
| 25 | + |
| 26 | + int mid = (start + end)/2; |
| 27 | + |
| 28 | + build(2*node, start, mid); |
| 29 | + build(2*node + 1, mid + 1, end); |
| 30 | + |
| 31 | + max_tree[node] = max(max_tree[2*node], max_tree[2*node + 1]); |
| 32 | + max_sum_tree[node] = max_3(max_sum_tree[2*node], max_sum_tree[2*node + 1], max_tree[2*node] + max_tree[2*node + 1]); |
| 33 | +} |
| 34 | + |
| 35 | +--------------------------------------- |
| 36 | + |
| 37 | +Now to run an update, just find your way to that node, and then update each parent of that node according to the above given relationships. |
| 38 | + |
| 39 | +void update(int node, int start, int end, int index, int value) |
| 40 | +{ |
| 41 | + if(start == end) |
| 42 | + { |
| 43 | + max_sum_tree[node] = max_tree[node] = element[index] = value; |
| 44 | + return; |
| 45 | + } |
| 46 | + |
| 47 | + int mid = (start + end)/2; |
| 48 | + |
| 49 | + if(start <= index && index <= mid) |
| 50 | + { |
| 51 | + update(2*node, start, mid, index, value); |
| 52 | + } |
| 53 | + else if(mid <= index && index <= end) |
| 54 | + { |
| 55 | + update(2*node + 1, mid + 1, end, index, value); |
| 56 | + } |
| 57 | + |
| 58 | + max_tree[node] = max(max_tree[2*node], max_tree[2*node + 1]); |
| 59 | + max_sum_tree[node] = max_3(max_sum_tree[2*node], max_sum_tree[2*node + 1], max_tree[2*node] + max_tree[2*node + 1]); |
| 60 | +} |
| 61 | + |
| 62 | +--------------------------------------------------------------------------------- |
| 63 | + |
| 64 | +Now, for a query, we need two functions. One to query max sum, one to query max. |
| 65 | + |
| 66 | +For each node that we visit, check if it lies completely inside the interval, or completely outside. |
| 67 | + |
| 68 | +If a node is completely inside the interval return max sum (node), since that is already compute. |
| 69 | + |
| 70 | +If a node is partially in the interval - |
| 71 | + |
| 72 | +1. Divide into left and right. |
| 73 | +2. query max(left), max(right), max sum(left) max sum(right) |
| 74 | +3. return max_3{ max(left) + max(right), max sum(left), max sum(right)} |
| 75 | + |
| 76 | +Now, for querying max, again check if the node is completely in the interval and return max (node), as it is already computed. |
| 77 | +Otherwise, go left and right and return max{ max left, max right} |
| 78 | + |
| 79 | +---------------------------------------------------------------------------------- |
| 80 | + |
| 81 | +int query_max(int node, int start, int end, int query_start, int query_end) |
| 82 | +{ |
| 83 | + if(query_start > end || query_end < start) |
| 84 | + return 0; |
| 85 | + |
| 86 | + if(query_start <= start && end <= query_end) |
| 87 | + { |
| 88 | + return max_tree[node]; |
| 89 | + } |
| 90 | + |
| 91 | + int mid = (start + end)/2; |
| 92 | + |
| 93 | + int left_max = query_max(2*node, start, mid, query_start, query_end); |
| 94 | + int right_max = query_max(2*node + 1, mid + 1, end, query_start, query_end); |
| 95 | + |
| 96 | + return max(left_max, right_max); |
| 97 | +} |
| 98 | + |
| 99 | +int query(int node, int start, int end, int query_start, int query_end) |
| 100 | +{ |
| 101 | + if(query_start > end || query_end < start) |
| 102 | + return 0; |
| 103 | + |
| 104 | + if(query_start <= start && end <= query_end) |
| 105 | + return max_sum_tree[node]; |
| 106 | + |
| 107 | + int mid = (start + end)/2; |
| 108 | + |
| 109 | + int left_max = query_max(2*node, start, mid, query_start, query_end); |
| 110 | + int right_max = query_max(2*node + 1, mid + 1, end, query_start, query_end); |
| 111 | + |
| 112 | + int left_answer = query(2*node, start, mid, query_start, query_end); |
| 113 | + int right_answer = query(2*node + 1, mid + 1, end, query_start, query_end); |
| 114 | + |
| 115 | + return max_3(left_answer, right_answer, left_max + right_max); |
| 116 | +} |
0 commit comments