|
| 1 | +There are N numbers a[0],a[1]..a[N - 1]. Initally all are 0. You have to perform two types of operations : |
| 2 | + |
| 3 | +1) Increase the numbers between indices A and B (inclusive) by 1. This is represented by the command "0 A B" |
| 4 | +2) Answer how many numbers between indices A and B (inclusive) are divisible by 3. This is represented by the command "1 A B". |
| 5 | + |
| 6 | +-------------------------------------------- |
| 7 | + |
| 8 | +Since there are many range updates, it's clear lazy propagation must be used. |
| 9 | + |
| 10 | +What happens in one operation. All n = m (mod 3), will become m + 1 (mod 3). |
| 11 | + |
| 12 | +Keep track of all the remainders mod 3 in every range. |
| 13 | + |
| 14 | +------------------------------------------------------------- |
| 15 | + |
| 16 | +void build(int node, int start, int end) |
| 17 | +{ |
| 18 | + if(start == end) |
| 19 | + { |
| 20 | + int mod = element[start]%3; |
| 21 | + int mod_2 = (mod + 1)%3, mod_3 = (mod + 2)%3; |
| 22 | + |
| 23 | + tree[node][mod] = 1; |
| 24 | + tree[node][mod_2] = tree[node][mod_3] = 0; |
| 25 | + |
| 26 | + return; |
| 27 | + } |
| 28 | + |
| 29 | + int mid = (start + end)/2; |
| 30 | + |
| 31 | + build(2*node, start, mid); |
| 32 | + build(2*node + 1, mid + 1, end); |
| 33 | + |
| 34 | + for(int m = 0; m < 3; m++) |
| 35 | + tree[node][m] = tree[2*node][m] + tree[2*node + 1][m]; |
| 36 | +} |
| 37 | + |
| 38 | +---------------------------------------------------------------------- |
| 39 | + |
| 40 | +We only need to know the number of operations mod 3. Make it 0 after it has been propagated. |
| 41 | + |
| 42 | +void propagate(int node, int start, int end) |
| 43 | +{ |
| 44 | + int no_of_additions = lazy[node]%3; |
| 45 | + |
| 46 | + if(no_of_additions == 1) |
| 47 | + { |
| 48 | + swap(tree[node][0], tree[node][1], tree[node][2]); |
| 49 | + } |
| 50 | + else if(no_of_additions == 2) |
| 51 | + { |
| 52 | + swap(tree[node][0], tree[node][2], tree[node][1]); |
| 53 | + } |
| 54 | + |
| 55 | + if(start != end) |
| 56 | + { |
| 57 | + lazy[2*node] = (lazy[2*node] + lazy[node])%3; |
| 58 | + lazy[2*node + 1] = (lazy[2*node + 1] + lazy[node])%3; |
| 59 | + } |
| 60 | + lazy[node] = 0; |
| 61 | +} |
| 62 | + |
| 63 | +-------------------------------------------------------------------------------------- |
| 64 | + |
| 65 | +For updating, first propagate the pending operations and then perform current operation. |
| 66 | + |
| 67 | +void update(int node, int start, int end, int query_start, int query_end) |
| 68 | +{ |
| 69 | + if(lazy[node]) |
| 70 | + propagate(node, start, end); |
| 71 | + |
| 72 | + if(query_start > end || query_end < start) |
| 73 | + return; |
| 74 | + |
| 75 | + if(query_start <= start && end <= query_end) |
| 76 | + { |
| 77 | + swap(tree[node][0], tree[node][1], tree[node][2]); |
| 78 | + |
| 79 | + if(start != end) |
| 80 | + { |
| 81 | + lazy[2*node]++; |
| 82 | + lazy[2*node] %= 3; |
| 83 | + |
| 84 | + lazy[2*node + 1]++; |
| 85 | + lazy[2*node + 1] %= 3; |
| 86 | + } |
| 87 | + return; |
| 88 | + } |
| 89 | + |
| 90 | + int mid = (start + end)/2; |
| 91 | + |
| 92 | + update(2*node, start, mid, query_start, query_end); |
| 93 | + update(2*node + 1, mid + 1, end, query_start, query_end); |
| 94 | + |
| 95 | + for(int m = 0; m < 3; m++) |
| 96 | + tree[node][m] = tree[2*node][m] + tree[2*node + 1][m]; |
| 97 | +} |
| 98 | + |
| 99 | +--------------------------------------------------------------------------- |
| 100 | + |
| 101 | +int query(int node, int start, int end, int query_start, int query_end) |
| 102 | +{ |
| 103 | + if(lazy[node]) |
| 104 | + propagate(node, start, end); |
| 105 | + |
| 106 | + if(query_start > end || query_end < start) |
| 107 | + return 0; |
| 108 | + |
| 109 | + if(query_start <= start && end <= query_end) |
| 110 | + return tree[node][0]; |
| 111 | + |
| 112 | + int mid = (start + end)/2; |
| 113 | + |
| 114 | + int left_answer = query(2*node, start, mid, query_start, query_end); |
| 115 | + int right_answer = query(2*node + 1, mid + 1, end, query_start, query_end); |
| 116 | + |
| 117 | + return (left_answer + right_answer); |
| 118 | +} |
0 commit comments