|
| 1 | + |
| 2 | + |
| 3 | +---------------------------------------------------------- |
| 4 | + |
| 5 | +Keep track of the number of lights on in the current interval. Use lazy propagation. |
| 6 | + |
| 7 | +void build(int node, int start, int end) |
| 8 | +{ |
| 9 | + if(start == end) |
| 10 | + { |
| 11 | + tree[node] = light[start]; |
| 12 | + return; |
| 13 | + } |
| 14 | + |
| 15 | + int mid = (start + end)/2; |
| 16 | + build(2*node, start, mid); |
| 17 | + build(2*node + 1, mid + 1, end); |
| 18 | + |
| 19 | + tree[node] = tree[2*node] + tree[2*node + 1]; |
| 20 | +} |
| 21 | + |
| 22 | +T(n) = T(2n) + T(2n + 1) |
| 23 | + |
| 24 | +--------------------------------------------------------------- |
| 25 | + |
| 26 | +void propagate(int node, int start, int end) |
| 27 | +{ |
| 28 | + int on_lights = tree[node]; |
| 29 | + int total_lights = end - (start - 1); |
| 30 | + int off_lights = total_lights - on_lights; |
| 31 | + |
| 32 | + if(lazy[node]%2 == 1) |
| 33 | + tree[node] = off_lights; |
| 34 | + |
| 35 | + if(start != end) |
| 36 | + { |
| 37 | + lazy[2*node] += lazy[node]; |
| 38 | + lazy[2*node + 1] += lazy[node]; |
| 39 | + } |
| 40 | + |
| 41 | + lazy[node] = 0; |
| 42 | +} |
| 43 | + |
| 44 | +If the number of pending operations is odd, then flip all the switches. |
| 45 | + |
| 46 | +------------------------------------------------------------------------------------- |
| 47 | + |
| 48 | +void update(int node, int start, int end, int query_start, int query_end) |
| 49 | +{ |
| 50 | + if(lazy[node] != 0) |
| 51 | + propagate(node, start, end); |
| 52 | + |
| 53 | + if(query_start > end || query_end < start) |
| 54 | + return; |
| 55 | + |
| 56 | + if(query_start <= start && end <= query_end) |
| 57 | + { |
| 58 | + int no_of_lights = end - (start - 1); |
| 59 | + int no_of_on_lights = tree[node]; |
| 60 | + int no_of_off_lights = no_of_lights - no_of_on_lights; |
| 61 | + |
| 62 | + tree[node] = no_of_off_lights; |
| 63 | + |
| 64 | + if(start != end) |
| 65 | + { |
| 66 | + lazy[2*node]++; |
| 67 | + lazy[2*node + 1]++; |
| 68 | + } |
| 69 | + return; |
| 70 | + } |
| 71 | + |
| 72 | + int mid = (start + end)/2; |
| 73 | + |
| 74 | + update(2*node, start, mid, query_start, query_end); |
| 75 | + update(2*node + 1, mid + 1, end, query_start, query_end); |
| 76 | + |
| 77 | + tree[node] = tree[2*node] + tree[2*node + 1]; |
| 78 | +} |
| 79 | + |
| 80 | +Make sure to write T(n) = T(2n) + T(2n + 1) at the end. It's important for the changes to go upward as well |
| 81 | +Intervals that fit completely inside or outside the interval we are interested in don't need that recurrence relation at the end. |
| 82 | +We only need to do lazy propagation till there. |
| 83 | + |
| 84 | +----------------------------------------------------------------------------------------- |
| 85 | + |
| 86 | +int query(int node, int start, int end, int query_start, int query_end) |
| 87 | +{ |
| 88 | + if(lazy[node] != 0) |
| 89 | + propagate(node, start, end); |
| 90 | + |
| 91 | + if(query_start > end || query_end < start) |
| 92 | + return 0; |
| 93 | + |
| 94 | + if(query_start <= start && end <= query_end) |
| 95 | + return tree[node]; |
| 96 | + |
| 97 | + int mid = (start + end)/2; |
| 98 | + |
| 99 | + int left_answer = query(2*node, start, mid, query_start, query_end); |
| 100 | + int right_answer = query(2*node + 1, mid + 1, end, query_start, query_end); |
| 101 | + |
| 102 | + return (left_answer + right_answer); |
| 103 | +} |
| 104 | + |
| 105 | +Make sure the laziness is propagated before querying. |
| 106 | + |
0 commit comments