|
| 1 | +1. Fact - A triangle is good only if the pairwise AND is non-0. |
| 2 | + |
| 3 | +Proof - x+y = x^y + 2(x&y) |
| 4 | + |
| 5 | +x^y counts all bits which are set either in x or y. |
| 6 | +x&y counts all bits which are set in both x and y and therefore needs to be multiplied by 2. |
| 7 | + |
| 8 | +We also know that if x, y and z form a triangle, then x + y > z |
| 9 | + |
| 10 | +Let the integers we choose be (a, b, c) |
| 11 | + |
| 12 | +(a^b) + (b^c) = (a^b^b^c) + 2[(a^b)&(b^c)] = |
| 13 | +(a^b) + (b^c) = (a^c) + 2[(a^b)&(b^c)] |
| 14 | + |
| 15 | +(a^b) + (b^c) > (a^c) => (a^b)&(b^c) > 0 |
| 16 | + |
| 17 | +We can prove this cyclically for all 3 variables. |
| 18 | + |
| 19 | +----- |
| 20 | + |
| 21 | +We have an easier task now. |
| 22 | +We now have to count the nummber of integers (a, b, c) such that 1 <= a, b, c <= n and |
| 23 | + |
| 24 | +1. (a^b)&(b^c) > 0 |
| 25 | +2. (b^c)&(c^a) > 0 |
| 26 | +3. (c^a)&(a^b) > 0 |
| 27 | + |
| 28 | +We will use Digit DP with the observation that all of a, b and c will match some prefix of n (possibly of length 0). |
| 29 | + |
| 30 | +----- |
| 31 | + |
| 32 | +We will represent the triplet as T[0], T[1], T[2] for convenience instead of (a, b, c). |
| 33 | + |
| 34 | +The state of the DP is f(i, prefix_mask, condition_mask). |
| 35 | +This represents the number of triplets of consisting of the bits [0, i - 1] of N satsifying the two masks. |
| 36 | +The reason we are using i to represent the triplets ending with [i - 1] bits is because the string is 0-indexed. |
| 37 | +It might have been more intuitive if it were 1-indexed. |
| 38 | + |
| 39 | +Here is the elaborate meaning of each variable. |
| 40 | + |
| 41 | +1. i represents the bit of n where we are at now. |
| 42 | +2. prefix_mask is a mask of 3 bits represnting whether each member of the triplet |
| 43 | + is either = or less than the prefix of [0, i - 1] |
| 44 | +3. condition_mask is a mask of 3 bits reprsenting which of 3 conditions is already true in the prefix of length [0, i - 1] |
| 45 | + |
| 46 | +Elaborating on how the masks are created. |
| 47 | +Let us suppose |
| 48 | +1. The first [0, i - 1] of T[0] match the first [0, i - 1] bits of N |
| 49 | +2. The first [0, i - 1] of T[1] is smaller than N |
| 50 | +3. The first [0, i - 1] of T[2] match the first [0, i - 1] bits of N |
| 51 | + |
| 52 | +The prefix mask is 101 |
| 53 | + |
| 54 | +The condition mask is also similar. A mask of 110 means two of the conditions required for being a good triangle are satisfied. |
| 55 | +----- |
| 56 | + |
| 57 | +This is a DP where it is easier to calculate the states f(i + 1, _, _) which f(i, _, _) will contribute to then |
| 58 | +build f(i, _, _) from f(i - 1, _, _) |
| 59 | + |
| 60 | +We will iterate over all possibilities of the i-th bit of T[0], T[1], T[2] |
| 61 | + |
| 62 | +If the first [0, i - 1] bits of N are equal to the first [0, i - 1] bits of T[0], the i-th bit of T[0] can only be [0, N[i]] |
| 63 | +If the first [0, i - 1] bits of N are smaller than the first [0, i - 1] bits of T[0], the i-th bit of T[0] can be both 0 or 1. |
| 64 | + |
| 65 | +Recalculate the new prefix_mask and new condition_mask and accordingly do |
| 66 | + |
| 67 | +f(i + 1, new_prefix_mask, new_condition_mask) += f(i, prefix_mask, condition_mask) |
| 68 | + |
| 69 | +----- |
| 70 | + |
| 71 | +Let us discuss the base case and the final answer |
| 72 | + |
| 73 | +Let the base case be f(0, 111, 0) = 1 |
| 74 | + |
| 75 | +When we consider the empty string, it is not possible for a, b, c to be < N so the prefix mask has to be 111 only. |
| 76 | +None of the conditions are met so the condition mask be 0 |
| 77 | + |
| 78 | +The empty string N corresponds to prefix 111 and condition 0. |
| 79 | + |
| 80 | +f(0, _, _) = 0 for all other values. |
| 81 | + |
| 82 | +---- |
| 83 | + |
| 84 | +The final answer is when all the bits are used so i = N.size() |
| 85 | +The prefix mask can be any legal value |
| 86 | +The condition mask is 111 |
| 87 | + |
| 88 | +Answer = Sum f(N.size(), p, 111) over all legal values of prefix_mask |
| 89 | + |
| 90 | + |
| 91 | +------ |
| 92 | + |
| 93 | +Time limit is tight so do some language level optimizations like global arrays. |
| 94 | + |
| 95 | +------ |
| 96 | + |
| 97 | + |
| 98 | +int is_bit_set(int n, int bit) |
| 99 | +{ |
| 100 | + return ( (n&(1 << bit)) != 0 ); |
| 101 | +} |
| 102 | + |
| 103 | +int main() |
| 104 | +{ |
| 105 | + ios::sync_with_stdio(false); |
| 106 | + cin.tie(nullptr); |
| 107 | + |
| 108 | + string S; |
| 109 | + cin >> S; |
| 110 | + |
| 111 | + no_of_triplets[0][MAX_MASK][0] = 1; |
| 112 | + for(int i = 0; i < S.size(); i++) |
| 113 | + { |
| 114 | + int prefix = i - 1; |
| 115 | + for(int prefix_match = 0; prefix_match <= MAX_MASK; prefix_match++) |
| 116 | + { |
| 117 | + for(int condition_met = 0; condition_met <= MAX_MASK; condition_met++) |
| 118 | + { |
| 119 | + for(int bit = 0; bit < NO_OF_TRIANGLE_SIDES; bit++) |
| 120 | + { |
| 121 | + limit[bit] = (is_bit_set(prefix_match, bit) ? S[i] : '1') - '0'; |
| 122 | + } |
| 123 | + |
| 124 | + for(next_bit[0] = 0; next_bit[0] <= limit[0]; next_bit[0]++) |
| 125 | + { |
| 126 | + for(next_bit[1] = 0; next_bit[1] <= limit[1]; next_bit[1]++) |
| 127 | + { |
| 128 | + for(next_bit[2] = 0; next_bit[2] <= limit[2]; next_bit[2]++) |
| 129 | + { |
| 130 | + |
| 131 | + for(int bit = 0; bit < NO_OF_TRIANGLE_SIDES; bit++) |
| 132 | + { |
| 133 | + triangle_sides[bit] = next_bit[bit]^next_bit[(bit + 1)%NO_OF_TRIANGLE_SIDES]; |
| 134 | + } |
| 135 | + |
| 136 | + int next_prefix_match = 0; |
| 137 | + for(int bit = 0; bit < NO_OF_TRIANGLE_SIDES; bit++) |
| 138 | + { |
| 139 | + if(is_bit_set(prefix_match, bit) && next_bit[bit] == S[i] - '0') |
| 140 | + { |
| 141 | + next_prefix_match |= (1 << bit); |
| 142 | + } |
| 143 | + } |
| 144 | + |
| 145 | + int next_condition_met = 0; |
| 146 | + for(int bit = 0; bit < NO_OF_TRIANGLE_SIDES; bit++) |
| 147 | + { |
| 148 | + int condition_here = (triangle_sides[bit]&triangle_sides[(bit + 1)%NO_OF_TRIANGLE_SIDES] != 0); |
| 149 | + if(is_bit_set(condition_met, bit) || condition_here) |
| 150 | + { |
| 151 | + next_condition_met |= (1 << bit); |
| 152 | + } |
| 153 | + } |
| 154 | + |
| 155 | + no_of_triplets[i + 1][next_prefix_match][next_condition_met] += no_of_triplets[i][prefix_match][condition_met]; |
| 156 | + no_of_triplets[i + 1][next_prefix_match][next_condition_met] %= MOD; |
| 157 | + |
| 158 | + /*cout << "F(" << i + 1 << "," << next_prefix_match << "," << next_condition_met << ") = " |
| 159 | + << no_of_triplets[i + 1][next_prefix_match][next_condition_met] << " added " |
| 160 | + << "F(" << i << "," << prefix_match << "," << condition_met << ") = " |
| 161 | + << no_of_triplets[i][prefix_match][condition_met] << " Current " |
| 162 | + << next_bit[0] << " " << next_bit[1] << " " << next_bit[2] << "\n";*/ |
| 163 | + } |
| 164 | + } |
| 165 | + } |
| 166 | + } |
| 167 | + } |
| 168 | + } |
| 169 | + |
| 170 | + long long answer = 0; |
| 171 | + for(int prefix_match = 0, all_conditions_met = MAX_MASK; prefix_match <= MAX_MASK; prefix_match++) |
| 172 | + { |
| 173 | + answer += no_of_triplets[S.size()][prefix_match][all_conditions_met]; |
| 174 | + answer %= MOD; |
| 175 | + } |
| 176 | + |
| 177 | + cout << answer << "\n"; |
| 178 | + return 0; |
| 179 | +} |
0 commit comments