forked from uzh-rpg/rpg_vid2e
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcmd.txt
134 lines (104 loc) · 5.77 KB
/
cmd.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#####################################################
新建会话:tmux new -s SESSION-NAME
杀死会话:tmux kill-session -t 0
接入会话:tmux attach-session -t 0
退出并杀死当前会话:ctrl+d
# 远程连接tensorboard
ssh -p 40216 -NL 8008:localhost:9009 root@ssh.atom.ks.supremind.info
链接成功后会卡死,直接新开一个终端启动tb就好了
# 打开tb
tensorboard --logdir='./' --port=9009
http://127.0.0.1:8008/
# 上传数据
双卡工作台
scp -P 40612 E:\Dataset\Avgkitti\data_odometry_gray\dataset\events_final.zip root@ssh.atom.rk.supremind.info:/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/events_final
单卡工作台
scp -P 42169 E:\SSC_Dataset\SemanticKITTI\data_odometry_voxels_all.zip root@ssh.atom.rk.supremind.info:/workspace/mnt/storage/shihao/SSC-HR-PCD/SemanticKITTI_Voxels_All
# 下载数据
scp -P 40272 root@ssh.atom.ks.supremind.info:/workspace/mnt/storage/shihao/shihao-cephs/SSC_out/SCFormer_multi_b2_no-aug3D_com0-1.zip D:\
scp -P 40216 root@ssh.atom.ks.supremind.info:/workspace/mnt/storage/shihao/shihao-cephs/SSC_out/SCFormer_multi_b2_l6_com0-1.zip D:\
# SMMC
上传数据:smmc cp -r src.zip ks/personal/shihao/
查看数据:smmc ls ks/personal/shihao
下载数据:smmc cp -r ks/personal/shihao/src.zip ./
# 清除显卡进程
安装fuser: apt-get install psmisc
fuser -v /dev/nvidia* |awk '{for(i=1;i<=NF;i++)print "kill -9 " $i;}' | sh
# 查看所有进程
ps -aux
# 查看服务器端口占用
netstat -ap
# SemanticKITTI SSC数据集分布
训练集:01-10除了08,共3834帧点云; 不抽帧: 19130帧点云
验证集:08,共815帧点云; 不抽帧: 4071帧点云
测试集:11-21,3901帧点云; 不抽帧: 20351帧点云
# SemanticPOSS SSC数据集分布
训练集:01,03,04,05,共2488帧点云
验证集:02,共500帧点云
# 迭代删除
rm -rf 路径
# 对执行脚本赋予可读可写可执行权限
sudo chmod 777 ×××
# pip换源
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
# 查看磁盘空间
df -h
# vid2e环境配置
镜像:reg.supremind.info/algorithmteam/supreimage/tools/smarttrafficintegrateddemo:pytorch1.9-trt7.2.2-ubuntu20.04-cuda11.2
source /opt/conda/bin/activate
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
cd /workspace/mnt/storage/shihao/MyCode-02/rpg_vid2e
pip install -r requirements.txt
pip install pybind11 matplotlib
python -m pip install ./esim_torch/
CUDA_VISIBLE_DEVICES=0
#####################################################
# 上采样[序列 09 10]
CUDA_VISIBLE_DEVICES=0 python upsample.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/images_reorganize_cuda0 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_cuda0_2
# 上采样[cuda 1, 序列 08]
CUDA_VISIBLE_DEVICES=1 python upsample.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/images_reorganize_cuda1 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_cuda1_2
# 上采样[cuda 0, 序列 01]
CUDA_VISIBLE_DEVICES=0 python upsample.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/images_reorganize_cuda0 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_cuda0_3
# 上采样[cuda 1, 序列 03]
CUDA_VISIBLE_DEVICES=1 python upsample.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/images_reorganize_cuda1 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_cuda1_3
# 上采样[cuda 0, 序列 02]
CUDA_VISIBLE_DEVICES=0 python upsample.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/images_reorganize_cuda0 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_cuda0_4
# 生成事件[cuda 1, 序列 1,3,8,9,10]
CUDA_VISIBLE_DEVICES=1 python ./esim_torch/scripts/generate_events.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_1-3-8-9-10 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/events
# 上采样[cuda 1, 序列 00]
CUDA_VISIBLE_DEVICES=1 python upsample.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/images_reorganize_cuda1 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_cuda1
# 生成事件[cuda 0, 序列 02]
CUDA_VISIBLE_DEVICES=0 python ./esim_torch/scripts/generate_events.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_cuda0_4 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/events
# 生成时间戳[序列 02]
python generate_timestamp.py
# 合并事件[cuda 0, 序列 02]
CUDA_VISIBLE_DEVICES=0 python merge_events.py
# 生成事件[cuda 1, 序列 00]
CUDA_VISIBLE_DEVICES=1 python ./esim_torch/scripts/generate_events.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_cuda1 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/events
# 生成时间戳[序列 00]
python generate_timestamp.py
# 合并事件[tmux1, cuda 1, 序列 00]
CUDA_VISIBLE_DEVICES=1 python merge_events.py
# 此前生成事件时裁剪了图像边界 重新生成,不裁剪而是resize; 同时改进vid2e,从静态时间戳改为动态时间戳
上采样[cuda 0, 序列 00]
CUDA_VISIBLE_DEVICES=1 python upsample.py \
--input_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/images_reorganize_cuda1 \
--output_dir=/workspace/mnt/storage/shihao/EventSSC/SemanticKITTI/kitti/dataset/imageFiles_Upsample_cuda1