-
Notifications
You must be signed in to change notification settings - Fork 432
/
Copy pathloss.py
54 lines (42 loc) · 1.92 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"""This module provides the a softmax cross entropy loss for training FCN.
In order to train VGG first build the model and then feed apply vgg_fcn.up
to the loss. The loss function can be used in combination with any optimizer
(e.g. Adam) to finetune the whole model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def loss(hypes, logits, labels, num_classes):
"""Calculate the loss from the logits and the labels.
Args:
hypes: dict
hyperparameters of the model
logits: tensor, float - [batch_size, width, height, num_classes].
Use vgg_fcn.up as logits.
labels: Labels tensor, int32 - [batch_size, width, height, num_classes].
The ground truth of your data.
Returns:
loss: Loss tensor of type float.
"""
with tf.name_scope('loss'):
logits = tf.reshape(logits, (-1, num_classes))
shape = [logits.get_shape()[0], num_classes]
epsilon = tf.constant(value=hypes['solver']['epsilon'], shape=shape)
logits = logits + epsilon
labels = tf.to_float(tf.reshape(labels, (-1, num_classes)))
softmax = tf.nn.softmax(logits)
# Optional: Prioritize some classes
# head: numpy array - [num_classes]
# Weighting the loss of each class
head = hypes['arch']['weight']
if head is not None:
cross_entropy = -tf.reduce_sum(tf.mul(labels * tf.log(softmax),
head), reduction_indices=[1])
else:
cross_entropy = -tf.reduce_sum(labels * tf.log(softmax), reduction_indices=[1]))
cross_entropy_mean = tf.reduce_mean(cross_entropy,
name='xentropy_mean')
tf.add_to_collection('losses', cross_entropy_mean)
loss = tf.add_n(tf.get_collection('losses'), name='total_loss')
return loss