Skip to content

Latest commit

 

History

History
843 lines (783 loc) · 50.7 KB

111.md

File metadata and controls

843 lines (783 loc) · 50.7 KB

接口

Python 中,鸭子类型(duck typing)是一种动态类型的风格。所谓鸭子类型,来自于 James Whitcomb Riley 的“鸭子测试”:

当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子。

假设我们需要定义一个函数,这个函数使用一个类型为鸭子的参数,并调用它的走和叫方法。

在鸭子类型的语言中,这样的函数可以接受任何类型的对象,只要这个对象实现了走和叫的方法,否则就引发一个运行时错误。换句话说,任何拥有走和叫方法的参数都是合法的。

先看一个例子,父类:

In [1]:

class Leaf(object):
    def __init__(self, color="green"):
        self.color = color
    def fall(self):
        print "Splat!"

子类:

In [2]:

class MapleLeaf(Leaf):
    def fall(self):
        self.color = 'brown'
        super(MapleLeaf, self).fall()

新的类:

In [3]:

class Acorn(object):
    def fall(self):
        print "Plunk!"

这三个类都实现了 fall() 方法,因此可以这样使用:

In [4]:

objects = [Leaf(), MapleLeaf(), Acorn()]

for obj in objects:
    obj.fall()
Splat!
Splat!
Plunk!

这里 fall() 方法就一种鸭子类型的体现。

不仅方法可以用鸭子类型,属性也可以:

In [5]:

import numpy as np
from scipy.ndimage.measurements import label

class Forest(object):
    """ Forest can grow trees which eventually die."""
    def __init__(self, size=(150,150), p_sapling=0.0025):
        self.size = size
        self.trees = np.zeros(self.size, dtype=bool)
        self.p_sapling = p_sapling

    def __repr__(self):
        my_repr = "{}(size={})".format(self.__class__.__name__, self.size)
        return my_repr

    def __str__(self):
        return self.__class__.__name__

    @property
    def num_cells(self):
        """Number of cells available for growing trees"""
        return np.prod(self.size)

    @property
    def losses(self):
        return np.zeros(self.size)

    @property
    def tree_fraction(self):
        """
 Fraction of trees
 """
        num_trees = self.trees.sum()
        return float(num_trees) / self.num_cells

    def _rand_bool(self, p):
        """
 Random boolean distributed according to p, less than p will be True
 """
        return np.random.uniform(size=self.trees.shape) < p

    def grow_trees(self):
        """
 Growing trees.
 """
        growth_sites = self._rand_bool(self.p_sapling)
        self.trees[growth_sites] = True    

    def advance_one_step(self):
        """
 Advance one step
 """
        self.grow_trees()

class BurnableForest(Forest):
    """
 Burnable forest support fires
 """    
    def __init__(self, p_lightning=5.0e-6, **kwargs):
        super(BurnableForest, self).__init__(**kwargs)
        self.p_lightning = p_lightning        
        self.fires = np.zeros((self.size), dtype=bool)

    def advance_one_step(self):
        """
 Advance one step
 """
        super(BurnableForest, self).advance_one_step()
        self.start_fires()
        self.burn_trees()

    @property
    def losses(self):
        return self.fires

    @property
    def fire_fraction(self):
        """
 Fraction of fires
 """
        num_fires = self.fires.sum()
        return float(num_fires) / self.num_cells

    def start_fires(self):
        """
 Start of fire.
 """
        lightning_strikes = (self._rand_bool(self.p_lightning) & 
            self.trees)
        self.fires[lightning_strikes] = True

    def burn_trees(self):    
        pass

class SlowBurnForest(BurnableForest):
    def burn_trees(self):
        """
 Burn trees.
 """
        fires = np.zeros((self.size[0] + 2, self.size[1] + 2), dtype=bool)
        fires[1:-1, 1:-1] = self.fires
        north = fires[:-2, 1:-1]
        south = fires[2:, 1:-1]
        east = fires[1:-1, :-2]
        west = fires[1:-1, 2:]
        new_fires = (north | south | east | west) & self.trees
        self.trees[self.fires] = False
        self.fires = new_fires

class InstantBurnForest(BurnableForest):
    def burn_trees(self):
        # 起火点
        strikes = self.fires
        # 找到连通区域
        groves, num_groves = label(self.trees)
        fires = set(groves[strikes])
        self.fires.fill(False)
        # 将与着火点相连的区域都烧掉
        for fire in fires:
            self.fires[groves == fire] = True
        self.trees[self.fires] = False
        self.fires.fill(False)

测试:

In [6]:

forest = Forest()
b_forest = BurnableForest()
sb_forest = SlowBurnForest()
ib_forest = InstantBurnForest()

forests = [forest, b_forest, sb_forest, ib_forest]

losses_history = []

for i in xrange(1500):
    for fst in forests:
        fst.advance_one_step()
    losses_history.append(tuple(fst.losses.sum() for fst in forests))

显示结果:

In [7]:

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(10,6))

plt.plot(losses_history)
plt.legend([f.__str__() for f in forests])

plt.show()

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VFX+//HXSSUJARJKMEAoShGkKaCgSBR0UbH/pCjY +NpWLKy6iq6IrmVVwF1dsSJFFBHXNQqKLGAQlGKjCAKihppQA0kgbZL7++PmztyZzKRMvTP5PB+P PGbmZubekzDceedzzj1HaZqGEEIIIYQIrKhQN0AIIYQQoiGQ0CWEEEIIEQQSuoQQQgghgkBClxBC CCFEEEjoEkIIIYQIAgldQgghhBBBUGPoUkq9o5Q6oJTabNo2QCm1Xin1k1LqO6VUf9P3JimlflVK bVNKXRzIhgshhBBChJPaKl2zgOEu214AHtc0rS8wueoxSqnuwCige9VrZiilpJImhBBCCEEtoUvT tFVAvsvmXKBp1f1mwL6q+1cC8zVNK9c0LQfYCQzwX1OFEEIIIcJXjBeveQRYrZSaih7aBlZtTwfW mp63F2jjW/OEEEIIISKDN91/M4F7NU3LACYC79TwXFljSAghhBAC7ypdAzRNG1Z1/yPg7ar7+4B2 pue1xdH1aKeUkiAmhBBCiLChaZryx368qXTtVEoNqbp/IbCj6v6nwGilVJxSqiPQGVjvbgeapsmX y9cTTzwR8jZY8Ut+L/J7CcrvZOpUtF9+CfnPYLnfSwR/ye9Ffi91/fKnGitdSqn5wBCghVJqD/rV ircDryql4oHiqsdomrZVKfUhsBWwAX/W/N1aIYQIhAcfhJ074bXXQt0SIUQEqzF0aZo2xsO3zvbw /GeBZ31tlBBCBJ3yS++BEEJ4JPNoWURmZmaom2BJ8ntxT34v1cnvxD35vbgnvxf35PcSWCrYPYBK Kel1FEJYi1Jw993w73+HuiVCCItRSqH5aSC9N1cvCiFE5JHuxbCi5N9LBECgi0ISuoQQQoQl6TUR /hSMIC9juoQQAqTSJYQIOAldQggBErqEEAEnoUsIIYQQIggkdAkhBEilSwgRcBK6hBACJHQJv+nQ oQOJiYkkJyeTnJxMkyZNyMvLC8qxMzMzmTlzZlCOJepPQpcQQgjhR0opFi1aRGFhIYWFhRQUFNC6 des6v95ms/l0bGFdErqEEAKk0iUCqrS0lPvvv582bdrQpk0bJk6cSFlZGQDZ2dm0bduWF154gVNO OYXx48ejaRr/+Mc/OO2002jRogWjRo0iPz8fgJKSEsaOHUuLFi1ISUlhwIABHDx4kMcee4xVq1Yx YcIEkpOTuffee0P5Iws3JHQJIQRI6BJ+5TqH2DPPPMP69evZuHEjGzduZP369Tz99NP27x84cID8 /Hx2797NG2+8wcsvv8ynn37K119/TW5uLikpKdx9990AzJkzh4KCAvbu3cvRo0d54403SEhI4Jln nmHw4MG8+uqrFBYW8vLLLwf1Zxa1k9AlhBAgoUv4jaZpXHXVVaSkpJCSksLVV1/N+++/z+TJk2nR ogUtWrTgiSee4N1337W/JioqiieffJLY2FgaNWrEG2+8wdNPP016ejqxsbE88cQTfPTRR1RUVBAX F8eRI0f49ddfUUrRt29fkpOTnY4vrElmpBdCCJDQFYH89U9a3wyjlCIrK4sLL7zQvi0xMZH27dvb H2dkZLB//37745YtWxIXF2d/nJOTw9VXX01UlKM2EhMTw8GDBxk3bhx79uxh9OjRHDt2jLFjx/LM M88QExNjP76wJql0CSEESOiKQJrmny9/SE9PJycnx/549+7dpKen2x+7BqWMjAyWLFlCfn6+/evk yZOccsopxMTEMHnyZLZs2cK3337LokWLmDt3rtv9CGuR0CWEECChSwTUmDFjePrppzl8+DCHDx/m qaeeYty4cR6ff+edd/Loo4+ye/duAA4dOsSnn34K6APvN2/eTEVFBcnJycTGxhIdHQ1AWloav/32 W+B/IOEVCV1CCCFEgP3tb3+jX79+9OrVi169etGvXz/+9re/2b/vWqG67777uOKKK7j44otp0qQJ AwcOZP369QDk5eVx3XXX0bRpU7p3705mZqY9wN1333189NFHpKamcv/99wfvBxR1ooI94E4ppckg PyGEpSgFDz8M//hHqFsi6kgpJQPGhV95ek9VbfdLKVwqXUIIAdK9KIQIOAldQgghhBBBIKFLCCFA Kl1CiICT0CWEECChSwgRcBK6hBBCCCGCQEKXEEKAVLqEEAEnoUsIIUBClxAi4CR0CSEESOgSQgSc hC4hRMNWWRnqFggREDk5OURFRVHp4T0+ZcqUGpciEv4noUsI0bBVVOi3Er6En3To0IHExESSk5NJ TU1lxIgR7N27N9TNqqY+i2NnZmaSkJBAcnKy/WvdunUBbJ2zm2++mccffzxoxwuUGkOXUuodpdQB pdRml+33KKV+UUr9rJR63rR9klLqV6XUNqXUxYFqtBBC+I0RtiR0CT9RSrFo0SIKCwvJzc0lLS2N e+65p977sdlsAWidQ32WUVJK8eqrr1JYWGj/Ovvss+t1vED/POGgtkrXLGC4eYNS6gLgCqCXpmln AFOrtncHRgHdq14zQykllTQhhLVJpUsEUHx8PNdeey1bt24F9IrRzJkz7d+fPXs2gwcPtj+Oiopi xowZdO7cma5du7Jy5Uratm3L9OnTSUtLIz09ndmzZ9ufv3jxYvr27UvTpk3JyMjgySefrNaGmTNn 0qZNG9LT05k2bZrHtq5du5ZBgwaRkpJCnz59WLlyZa0/n6ZpPP3003To0IG0tDRuuukmCgoKAEf3 5jvvvEP79u0ZNmwYAO+88w7du3cnNTWV4cOHs3v3bvv+Jk6cSFpaGk2bNqVXr15s2bKFN998k/ff f58XXniB5ORkrrzyylrbZVU1hiJN01YB+S6b7wKe0zStvOo5h6q2XwnM1zStXNO0HGAnMMC/zRVC CD+T0CUCwKginTx5kgULFjBw4EBArxjV1q2XlZXFd999x9atW9E0jQMHDlBQUMD+/fuZOXMmd999 N8ePHwegcePGzJs3j+PHj7N48WJee+01srKynPaXnZ3Nzp07Wbp0Kc8//zzLly+vdsx9+/YxYsQI Jk+eTH5+PlOnTuXaa6/lyJEj1X4ms1mzZjFnzhyys7P5/fffKSoqYsKECU7P+frrr9m2bRtLliwh KyuL5557jv/+978cPnyYwYMHM2bMGAC+/PJLVq1axa+//srx48dZuHAhzZs35/bbb+eGG27g4Ycf prCwsNrPF068qUR1Bs5XSq1VSmUrpfpVbU8HzJ3We4E2vjZQCCECqrxcv5XQJfxE0zSuuuoqUlJS aNasGcuXL+fBBx+s8+snTZpEs2bNiI+PByA2NpbJkycTHR3NJZdcQuPGjdm+fTsAQ4YMoUePHgD0 7NmT0aNHV6tQPfHEEyQkJHDGGWdwyy23MH/+/GrHnDdvHpdeeinDh+udW8OGDaNfv34sXrzY/jPd e++9pKSkkJKSQr9++kf/e++9xwMPPECHDh1ISkriueee44MPPnAavD9lyhQSEhJo1KgRr7/+OpMm TaJr165ERUUxadIkNmzYwO7du4mLi6OwsJBffvmFyspKunbtSuvWrZ1+r+EuxsvXpGiado5Sqj/w IdDJw3PD/zckhIhMR45Afj4cPqw/ltAVcdST/pkGRHuifh9lSimysrK48MIL0TSNTz75hCFDhti7 GGvTrl07p8fNmzcnKspRI0lMTKSoqAiAdevW8cgjj7BlyxbKysooLS1l5MiRHveXkZHB5s1Ow7QB 2LVrFwsXLuSzzz6zb7PZbFx44YX2n+mVV17h1ltvdXpdbm4u7du3d9q/zWbjwIEDbo+/a9cu7rvv Ph544AGn/ezfv58LLriACRMmcPfdd7Nr1y6uueYapk6dSnJysoffVPjxJnTtBT4G0DTtO6VUpVKq BbAPML9T2lZtq2bKlCn2+5mZmWRmZnrRDCGE8EGvXrB/v+OxhK6IU9+wFAhKKa6++mruuOMOVq9e TVJSEidOnLB/Py8vz+1r6ur666/n3nvv5csvvyQuLo6JEydy2PhDosru3bvp2rWr/X6bNtU7oTIy Mhg3bhxvvvlmnY8NkJ6eTk5OjtOxYmJiSEtLs4/VMv88GRkZPP744/YuRVf33HMP99xzD4cOHWLk yJG8+OKLPPXUU/X6nfgqOzub7OzsgOzbm+7FT4ALAZRSXYA4TdMOA58Co5VScUqpjujdkOvd7WDK lCn2LwlcQoiQMAcukNAl/MroCtM0jaysLI4dO0b37t3p06cPH3/8McXFxezcudNpUL03ioqKSElJ IS4ujvXr1/P+++9XCyhPP/00xcXFbNmyhdmzZzNq1Khq+xk7diyfffYZS5cupaKigpKSErKzs9m3 z1E7cde9N2bMGF566SVycnIoKiri0UcfZfTo0U6VObM777yTZ5991l71M8ZuAXz//fesW7eO8vJy EhMTadSoEdHR0QCkpaXx+++/e/dLqqfMzEynnOJPtU0ZMR/4FuiilNqjlLoFeAfoVDWNxHzgRgBN 07aidzVuBb4A/qxFQgesEKJhkNAl/Ojyyy8nOTmZpk2b8vjjjzNnzhxOP/10Jk6cSFxcHGlpadxy yy2MHTvWKSS5q+jUVOWZMWMGkydPpkmTJvz973+vFqiUUgwZMoTTTjuNYcOG8dBDD9mvIjQP6m/b ti1ZWVk8++yztGrVioyMDKZNm+YUtNy149Zbb2XcuHGcf/75dOrUicTERF555RWPr7nqqqt4+OGH GT16NE2bNqVnz558+eWXABQUFHD77beTmppKhw4daNGiBQ899BAA48ePZ+vWraSkpHDNNdd4/H1Y nQp2LlJKSRYTQoSe6wfIXXfBjBmhaYuoN6VURAysFtbh6T1Vtd0v/Zsyj5YQQgwbBvIBLoQIMAld QgjRv790LwohAk5ClxBCNG4soUsIEXASuoQQQkKXECIIJHQJIURSkoQuIUTASegSQoiYGAldQoiA k9AlhBBRURK6hBABJ6FLCCGio8FmC3UrhBARTkKXEKJhW7YMEhKguDjULRENwOzZsxk8eHComyFC REKXEKJhi4uDxEQJXcKvVq9ezaBBg2jWrBnNmzfnvPPO4/vvvw/IsTp06EBiYiLJycmkpqYyYsQI 9u7dG5BjAdx8883Ex8eTnJxs/zLWTwyGKVOmMG7cuKAdz58kdAkhGra4OL3SdfJkqFsiIkRBQQEj RozgvvvuIz8/n3379vHEE08QHx8fkOMppVi0aBGFhYXk5uaSlpbGPffc49W+bHXoZldK8fDDD1NY WGj/uu666/x+nEgkoUsI0bDFxEilS/jVjh07UEoxatQolFI0atSIiy66iJ49e1Z77rfffkv//v1p 1qwZAwYMYM2aNQB89dVX9OrVy/68iy66iAEDBtgfDx48mE8//bTa/uLj47n22mvZunWrfVtmZiYz Z860P3bt4oyKimLGjBl07tyZrl27snLlStq2bcv06dNJS0sjPT2d2bNn1+lnf+utt+jcuTPNmzfn yiuvJDc31+NxABYtWkSfPn1ISUnh3HPPZfPmzfbnP//887Rt25YmTZrQrVs3VqxYwZIlS3juuedY sGABycnJ9O3bt07tsgoJXUKIhi02Vipdwq+6du1KdHQ0N998M0uWLCE/P9/t844ePcpll13G/fff z9GjR/nLX/7CZZddRn5+Pueccw6//vorR48epby8nE2bNpGbm8uJEycoLi7mhx9+cApOxkLNJ0+e ZMGCBQwcOND+PaUUynWBdxdZWVl89913bN26FU3TOHDgAAUFBezfv5+ZM2dy9913c/z48WrHM1ux YgWPPvooCxcuJDc3l/bt2zN69GiPx/npp58YP348b731FkePHuWOO+7giiuuoLy8nO3bt/Pqq6/y /fffU1BQwNKlS+nQoQPDhw/n0UcfZfTo0RQWFvLTTz/V/g9iIRK6hBANm1HpktAl/CQ5OZnVq1ej lOK2226jVatWXHnllRw8eNDpeYsXL6Zr167ccMMNREVFMXr0aLp168ann35KQkIC/fv3Z+XKlfzw ww/06dOHc889l9WrV7N27Vo6d+5MSkoKoAegq666ipSUFJo1a8by5ct58MEH69XmSZMm0axZM3sX aGxsLJMnTyY6OppLLrmExo0bs337dvvxpk6dSkpKCikpKbRq1QqA9957j/Hjx9OnTx/i4uJ47rnn WLNmDbt373Z7nDfffJM77riD/v37o5TixhtvJD4+njVr1hATE0NpaSlbtmyhvLycjIwMOnXqZD++ u9AXDiR0CSEatpgYuXoxUinlny8vdOvWjVmzZrFnzx5+/vln9u/fz/333+9Ucdq/fz8ZGRlOr2vf vj379+8HYMiQIWRnZ7Nq1SqGDBnCkCFDWLlyJV9//TWZmZmmH1ORlZVFfn4+paWlvPLKKwwZMqRa yKtJu3btnB43b96cqChHREhMTKSoqMh+vIceeoj8/Hzy8/PtxzGqW4akpCSaN2/Ovn373B5n165d TJs2zR7eUlJS2Lt3L7m5uZx66qn885//ZMqUKaSlpTFmzBinrspwJaFLCNGwSaUrcmmaf7581LVr V2666SZ+/vlnp+1t2rRh165dTtt27dpFmzZtAD10ffXVV/aQZYSwlStXMmTIELfHUkpx9dVXEx0d zerVqwE9/Jw4ccL+nLy8PLevqw93lab09HRycnLsj0+cOMGRI0fsP4/rcTIyMnjsscfs4S0/P5+i oiJGjRoFwJgxY1i1ahW7du2yD973pq1WIqFLCNGwSaVL+Nn27duZPn26vcKzZ88e5s+f7zTOCuCS Sy5hx44dzJ8/H5vNxoIFC9i2bRsjRowAYNCgQWzfvp3vvvuOAQMG0L17d3bt2sW6des4//zznfZl hCBN0+xVr9NPPx2APn368PHHH1NcXMzOnTudBtV7w1PX3pgxY5g1axYbN26ktLSURx99lHPOOada Nc9w22238frrr7N+/Xo0TePEiRMsXryYoqIiduzYwYoVKygtLSU+Pp5GjRoRHR0NQOvWrcnJyQnL LkYJXUKIhse85E9MjP5VUSFLAQm/SE5OZt26dZx99tk0btyYgQMH0qtXL6ZNmwY4KjXNmzdn0aJF TJs2jRYtWjB16lQWLVpEamoqoHfpnXXWWfTo0YOYmBhAD2IdOnSgRYsWTse8/PLLSU5OpmnTpjz+ +OPMnTvXHromTpxIXFwcaWlp3HLLLYwdO9apWuSuclRTNcnTwPyhQ4fy97//nWuvvZb09HT++OMP PvjgA4/7POuss3jrrbeYMGECqampdO7cmblz5wJQWlrKpEmTaNmyJaeccgqHDx/mueeeA7BPT9G8 eXP69evnsZ1WpIKdFJVSWjimUyFEBCkv1+fnAjhwAFq10h8XFkKA5lIS/qWUCstKh7AuT++pqu1+ 6dOUSpcQouExT8xYVUEgJgYiYKCuEMK6JHQJIRqeigrHfSN0FRdDx45gGnAshBD+JKFLCNHwHDrk uG+ELoN5IsuiIjhyJDhtEkJEPAldQoiGp2qSRaB66Dp2zHH/yishLS04bRJCRDwJXUKIhq2m0PXH H85dkUII4QMJXUKIhi3K5TRoDl0yhYQQwo8kdAkhhJmELiFEgEjoEkIIM/NyQBK6hBB+JKFLCCHM ysoc9yV0CSH8SEKXEEKYSegSPurQoQPLly/3+vWzZ89m8ODBfmvPlClTGDdunNO2zMxMEhISSE5O plmzZgwZMqTagtz+NGXKFGJjY0lOTrZ/TZ06NWDHc+Xv36m3agxdSql3lFIHlFKb3XzvAaVUpVIq 1bRtklLqV6XUNqXUxYFosBBCBJSELuEjT2sTWolSildffZXCwkKOHj1KZmZmtWBWVzbzCg81HG/M mDEUFhbavx588EG/H8fqaqt0zQKGu25USrUDLgJ2mbZ1B0YB3ateM0MpJZU0IUR4kdAl/EDTNGbP ns15553HQw89RGpqKp06dWLJkiX258yePZtTTz2VJk2a0KlTJ95//322bdvGnXfeyZo1a0hOTrYv fr148WL69u1L06ZNycjI4Mknn7TvJycnh6ioKObOnUv79u1p2bIlzz77LABLlizhueeeY8GCBSQn J9O3b99qbY2KimLUqFFs3brVvu3mm2/m8ccftz/Ozs6mXbt29scdOnTghRdeoFevXiQnJ/Pbb795 bIPx+/C0Vuann35Kjx49SElJ4YILLmDbtm0ej1NZWcnatWsZNGgQKSkp9OnTh5UrV3r1Ow2FGkOR pmmrgHw335oO/NVl25XAfE3TyjVNywF2AgP80UjRwCkF69eHuhUiktQ04amELuEHRqVr/fr1dOvW jSNHjvDXv/6V8ePHA3DixAnuu+8+lixZQkFBAWvWrKFPnz5069aNN954g4EDB9qrUACNGzdm3rx5 HD9+nMWLF/Paa6+RlZXldMxvvvmGHTt2sHz5cp566im2b9/O8OHDefTRRxk9ejSFhYX89NNP9ucb IaisrIz33nuPgQMHOrW/tmrdBx98wBdffMGxY8eIjo722Iaa7Nixg+uvv56XX36Zw4cPc+mll3L5 5Zc7VbXMx8nNzWXEiBFMnjyZ/Px8pk6dyrXXXsuRI0fq/TsNhXpXopRSVwJ7NU3b5PKtdGCv6fFe oI0PbRPCYbNLD7fNJh+Iwnvnngu33ur+exK6hB+1b9+e8ePHo5TixhtvJDc3l4MHDwJ6hWnz5s0U FxeTlpZG9+7dAdxWhIYMGUKPHj0A6NmzJ6NHj3aq8AA88cQTxMfH06tXL3r37s3GjRvt+3Pdp6Zp 3HvvvaSkpNCkSRNmzJjB5MmTqz3HE6UU9957L23atCE+Pr7WNgB8+OGHpKSkkJKSQmpqKrm5uSxY sIARI0YwdOhQoqOjefDBBykuLubbb791e5x58+Zx6aWXMny43gk3bNgw+vXrx+LFi1FK1et3Ggox tT/FQSmVCDyK3rVo31zDS9z+lFOmTLHfz8zMJDMzsz7NEAK6dIHzzoO5c0PdEhGOKiqge/fqE6OC hK4IorKz/bIfzYfPqNatW9vvJyYmAlBUVESrVq1YsGABU6dOZfz48Zx77rlMmzaNrl27ut3PunXr eOSRR9iyZQtlZWWUlpYycuTIGo9VVFTksV1KKV555RVurfrjY/Xq1VxxxRWsXLmSnj171ulnM3c3 1qUNo0aNYq7LOTs3N5eMjAyndrVr1459+/a5Pc6uXbtYuHAhn332mX2bzWbjwgsvJDExsV6/U0+y s7PJ9tN7x1W9QhdwKtAB2FhVdmwL/KCUOhvYB5j/BdpWbavGHLqEqBPXMvcff7j/wBSiLioqoHNn 90v8mEOXCGu+hKVguPjii7n44ospLS3lscce47bbbuPrr7922613/fXXc++99/Lll18SFxfHxIkT OXz4cJ2OU5dB/eeddx6nnXYa//vf/+jZsydJSUmcNM1Zl5eX59V+zdxVm9LT09ls6snQNI09e/bQ po2jo8x8nIyMDMaNG8ebb77p9hj1+Z164loMMo+f81W9PrU0TdusaVqapmkdNU3riN6FeKamaQeA T4HRSqk4pVRHoDMgA3GEf7j7DyNVCOGtigqoGoNiN2ECjBzpHLosfgWasK7aurMOHjxIVlYWJ06c IDY2lqSkJPu4qLS0NPbu3Ut5ebn9+UVFRaSkpBAXF8f69et5//336xwkWrduTU5OjtsuRsOaNWvY unWrvQuzT58+fP755+Tn55OXl8c///nPOh2rvkaOHMnixYtZsWIF5eXlTJs2jUaNGjFo0CC3zx87 diyfffYZS5cupaKigpKSErKzs9m3b1+9f6ehUNuUEfOBb4EuSqk9SqlbXJ5i/xfTNG0r8CGwFfgC +LNmlU5UEZkkdAlvVVRUX+j6lVfgssskdAm/MAaiuwYj43FlZSUvvfQSbdq0oXnz5qxatYrXXnsN gKFDh9KjRw9at25Nq1atAOxjrpo0acLf//53Ro0a5Xa/7lx33XUANG/enH79+tm3T5gwwT5n1o03 3sgzzzzDn/70JwDGjRtH79696dChA8OHD2f06NG1hryavu9pYH6XLl2YN28e99xzDy1btmTx4sV8 9tlnxLj+/6zStm1bsrKyePbZZ2nVqhUZGRlMmzYNTdPq/TsNBRXsXKSUkiwm6kcpmDULbr7ZeVu7 drB7d8iaJcLY0KEwaRIMG+a8/YMP4JNP9FuAZs3g+HGQc5blKKUsMzhaRAZP76mq7X75C0wGxYjw 4O4vKHfjcYSoC3fdiwBxcVLpEkIEjIQuER5kTJfwJwldQogQkNAlwoNUuoQ/1RS6Sksdj42uBunG EkL4gYQuEb6k0iW85Sl0JSeDeW4jY1bsEF/xJISIDBK6RHhwV+k6cgTqOE+NEE5stupXL4I+cP7Y Mcfj8nJ9PjiZu0sI4QcSuoS11datk5sbnHaIyOKp0uUausrKoHFjCV1CCL+Q0CWszehC9NSVmJAQ vLaIyOEpdDVtCnl50KiRY8xgQoKELiGEX9R3GSAhgssYU2Nacb7a9ysrZUkgUT+eQpcR4ktL9a7F 2NjqVzQKy6jvMjRChJqELmFtRtjydKXihRdCnz7w+efBa5MIf55Cl/lDvKxMD1wSuiwpbCdGzcyE KVP0W4Om6X84ZmTAv/4FV10Vosbp3t34Lrcvup2k2CS337/9rNt5duizQW5VZJDQJazNU+jq3h22 btXHdCW5PzEI4ZGngfRmhw9LpUv4z759kJ/vvjJvhP24uKBPhbP98HbyS/Kdtn2x8wueufAZ/jLw L0FtS0MgoUtYm6fuRZtN/0AsL4dOnYLfLhHePFW6zPbv199jsbESuoRvSkuhbVv9fpcunodDxMUF dSqc8opyznzzTHq26um0PUpF8ch5jwStHQ2JhC5hba6Vru3bIT1dD1uNGum38fGha58IT3UJXceO Sfei8I+sLMf94mLLhK53N71LRtMM1v7f2qAds6GT0CWszbXS1a0b/N//6Y/j46GwsPYPTyFcGeO1 avLHH9BJ1Dz9AAAgAElEQVS8uYQu4TtjAXXQ30vuQteECXoXZJC6F/OL85nw+QT+NfxfQTme0Mkl X8La3I3pKi52rnDVNjZHNGxffKGHc7OiIn32+Zp8841+kYamwZo1gWufiHzFxY77nkLXK6/oV88G qdK18cBGzjzlTG4767agHE/oJHQJa3MXumJjHZUukEqXqNmll+pXhBkqKqCkpPY53rZvhw4doHdv 2LQpoE0UEc68tJSn0AX6uSxIoWtD3gb6tO4TlGMJBwldwtrcDaSPiXGudEnoErUxzzJ/8iQkJtY+ t1teHjRpAuef73meOCHqoq6hKyoqKKFrY95GXv/+dXqn9Q74sYQzCV3C2oyFhs2VLiN0GZdZy8LX ojbm0FVUpC/tU5uDB/XQFRenX30mhLfM3dvmc5erqKigjOn6aOtH9G7dm1FnjAr4sYQzCV3C2owB zK6VLpvNsS6jEcyE8MQIXWvXwhVX1C10VVbqoSs+XgbSC9+YK10Q8u7FDQc2MKrHKJrENwn4sYQz CV3C2owPO3eVLoN0/YjaGAH9s8/g++/rFrpAH2wvlS7hq7qGriB1L8p4rtCR0CWszQhd5pBlnLCM IFZTpSshAZYt81zOFw2D8Z5JTdVvawpd3bo57kulS/hK0/RxhGY1ha4AdS/+kf8Hp0w7hRYvtKDE VkKHZh0CchxRMwldwtqMDzvXS/7N1a6aKl0lJTB/fmDaJsKHcbFFSop+W9PSUVu2wNSp+n1jTJeE LuGt0tLqc8KFoHsxOyebs9uczbYJ28i5L4coJR//oSC/dWFtxoedeSC0pjkvzeIpdBl/MR4+7Hid aFhcqwbGh11NQT0qyhHKpHtR+KqkRF89wywE3Yu3L7qdIe2H0CKxBUlxsl5tqEjoEtZWVqafsMyh C/RKl3Fy8tS9eOSIfvvHH/ptSUlg2iisywhLxnuktqBuMEKXdC8KX9U3dAWge3HTgU0kxSZx/zn3 +33fon4kdAlrKyuDVq2qh67YWMfJydMHqFHh2rxZv5XQ1fAY/+behi6pdAlfuQtdLVq4f24AKl0V lRUMnjWYG3vfiJKxrSEnoUtYmzl0Gd2DlZXOoctTpcs1ZJmX4hANg2vo+u47/ba20JWYqH9QxsZK pUv4xl3oMsYWuoqO1s9rGzf65dCFpYW8+cObpCak8vIlL/tln8I3ErqEtZWV6VecFRY6VyvM3Yue PkAldAmjQmWEprlz9du6VLqaVM1hJJUu4Qt3ocuTmBhYulRf89MPFm5dyPS10/nLOX/xy/6E7yR0 CWsrK9Mv7y8rc4Su0lLnStevv7r/y9A1ZEnoaniMcFVe7nwhRW3jZhITnUOXVLqEt+oTuhITHcMi /GBD3gbu6ncX95x9j9/2KXwjoUtYmzl0GR+gJSXOla4TJ9z/Zeha6ZIxXQ2P8Z4pK3MErR494KOP an5djx7w/PP6feleFL4wQtc33+iPaxpXlZion8/8RCZBtZ4aQ5dS6h2l1AGl1GbTtheVUr8opTYq pT5WSjU1fW+SUupXpdQ2pdTFgWy4aCDchS7XSpcn0r0ozJUu4/6ZZ8Kpp9b8ukaN4Jpr9PvSvSh8 YYSuQYP0x65zdpklJDhClw9T3Lzx/RvcknULP+T+IItaW0xtla5ZwHCXbUuBHpqm9QZ2AJMAlFLd gVFA96rXzFBKZl8TPvLUvRgTU7fQdcEFjscSuhoem02/Iqy83PF+qW/VKjZW348srC68UVKiV0sN sbGen5uY6JjqxofK/LOrn6Vnq568d817NE9s7vV+hP/VGIo0TVsF5Lts+5+macbZZx3Qtur+lcB8 TdPKNU3LAXYCA/zbXNHgGPN0KeU4CRmVrto+BEtKoGNHx2MJXQ2PzaZXD0pK4Nxz9W31DV1Kybgu 4T3XMV21VbqM95nr0kF19On2T9l9fDf3n3M/V3W7yqt9iMDxtRJ1K/B51f10YK/pe3uBNj7uXzR0 NpsesOLiHCeh+nQvmk92Mqar4TFC1/HjjostvOkqlNAlvFWf0JWY6LjvZehatGMRD5/7sCzzY1Fe /6sopR4DyjRNe7+Gp8m6K8I3Nps+d41r6IqJqX3Mg+vJTipdDY/Npn+Qmdfu7Nmz/vspKoJzzvFf u0TDYT4PdesG55/v+bnmrkcvQtfegr289eNbXN3t6nq/VgRHjDcvUkrdDFwKDDVt3ge0Mz1uW7Wt milTptjvZ2ZmkpmZ6U0zRENQUaEHLHPoKilx/EWoFPzwA4wdW/21ErqEUeky/9s/95x3+/rlF/+0 STQs5vPQzz/XfPViUZF+27OnV1cxrtu7jgs6XMDZbc/2oqHCkJ2dTXZ2dkD2Xe/QpZQaDjwEDNE0 zdxf8ynwvlJqOnq3Ymdgvbt9mEOXEDVyV+k6fhzaVPVcR0dDs2buT1DFxRK6GjLjw+3MM91vFyIY zKErOrrm53bqpN8mJ3tV6dqQt4HzMs6r9+uEM9di0JNPPum3fdc2ZcR84Fugq1Jqj1LqVuAVoDHw P6XUT0qpGQCapm0FPgS2Al8Af9Y0H655FQL0SpcRuoxglZOjz6ME+veSktyHrhMn9CsfQb+CLTc3 KE0WFpOaGuoWiIasPpOjnnmmPmwiKaleoWvXsV1sOrCJb/Z8Q9/Wfb1sqAiGGitdmqaNcbP5nRqe /yzwrK+NEsLOZqvevQjQpYt+GxWldzW6O0EVFemha/Bg/fVTp8KLLwan3cI66vqBJ0QglJRA06a1 P8+sHpOk2iptnPHaGXRs1pHY6FjOaStjD63MqzFdQgTFmjVw4AD06qWHpvWm3mpj3pvoaP0EVVys TyERZSreGqHr66/hjjtg+XL9r0jpXmpYYvx8mtuyBbp3l/eRqJuSEkhLq99rPP0haXKs5Bgr/lhB XlEepzQ+hU13bfKhkSJYJHQJ6zJmcL7kEti5Ux+EaoiJ0RcvTkrSg1ajRnrwSkpyPMcIXaCPAwPH FBQishkT6YL/Q9cZZ8CGDdBbZvoWdVBaWv9qax1C1/zN85m6Ziq903pzzwBZWzFcSOgS1hcdXX2O rehoGGPq/TZOUp5CV0GBflteLqGrITB/YPk7dIEsCyTqrj5jugx1GNOVV5THuF7jmJI5xfu2iaCT 2dOE9cXEwAcfOG9zvQrI3WB6c+iaMUO/NVdAROQyX7kaE1P7VWP1JdcIibryJnTVYUxXXlEerRu3 9qFhIhSk0iWsyfyhFh0No0bB6NGOba7VC0+hy6h8deigX8UmoathOHlSH7xcUqK/V1JT4dAh/+1f QpeoK9e1F+uiqnK//fB2pq2Z5vYpy35fxvDTXJdGFlYnoUtYk83muO+uSlGXSldJiT4xpiE2VkJX Q3HyJDRpol+IERMDKSm+ha7//hfGj/df+0TDUVZW89I/7iQlQX4+//nlP+wv3M8VXa+o9pQBbQYw tNNQNy8WViahS1iTeZ07d2NyXLe5K8e7nuxiYpzDnIhcxcX6BJOgB/RevWDHDu/316+fc4CXSpeo K2NVjVrc9MlN7C3Qly8esWkfnXcV8mpbeGHYC9zQ64ZAt1IEiYQuYU3mgcpGVatZMzh2zHmbIS6u eqByDV1S6Wo4bDbnf/s5c2D3budpR+rD9b0joUvUlbGqRg0OnThE1rYs/jPyPwC0PriU1OM/8u7V kzi33bnBaKUIEhlIL6zJHLqMvxLNVyu6nsTcVbEkdDVc5jnbNE2vhNZ3riSz2Fjn6qsQdVVLpWtl zkp6v96bfun9GNppKEM7DaVHxwGcEtWECzteSHxMPceDCUuT0CWsyV2l69//hoUL9fuuJ7HoaAld wsE1dIFvk5nGxUmlS3inhkpXRWUFy35fxnXdr+OT0Z84vlGHebpEeJLuRWFN7kJXVJTjakR3la6K Cudt7kKXjOlqGMyhywhbvoQuI7BXVjr2L0RdeKh0HT55mHYvtaOisoKs0Vk0jmvs+GY9lgES4UVC l7Cm0lL9Q1LTnE9YRohyPYm5di8aAcwczmJipNLVUJhDV2KifuuP0GW8ryS8i7qqqIDoaApLC+0D 5QHW7l3LOW3P4aubvqr+Gql0RSwJXcKaysr0gfP5+c7ByZhN3rXS5dq96O4ybelebDgqKhyhy7xK gbeiopxXRnCtqgrhSVX34t2f382KP1aQHJ9s/9YdZ93h/jV1mJFehCcJXcKadu7UL9HPz3euahmh q7ZKl4Suhs1c6TJCl68LVCcmQmGhfl8qXaIWmqax/I/l9D+Zz4a93/DNnm9YdP0i+rTuU/uLpXsx YslAemFNS5dCly76fXNVywhStY3pktDVsFVWOt4jxlJQvoaupCQJXaLOth/ZzrUfXsuxosMs3P4x A9oMoHvL7nV7cUKCPteciDgSuoR1Gcv++Kt7saAA1qxx3qZpsGyZf9orrCMQla6kJMfC6dK9KGqw 48gOXvzmRS7qdBHtG7fh31e8zvxr5xMXXceZ6V2vlhURQ0KXsKaKCsd6ZeYrxeo6kN5d6Pr+e5g8 2Xnbxo1w0UX+abOwDiN0vfMOXHedvu3FF/XlfLyVmOgIXVLpEjV4ed3L7C7YzYQBE+wD6eslLk7m hYtQMqZLWJP5RGWePsJTpasu3YvuGAOjRWQxQtcttzi2deyof3nLXOmS0CU8WJmzks92fMacq+aQ 2SFTf6/UYRkgJxK6IpZUuoQ1mUOX+eTjy0D6557T19AzkxNbZDJ3L/qLeSC9dC8KD17/4XUuOe0S BrUbpG/wptJlnM9kPriII6FLWJP5RGUOT54G0rsb02UENMPZZzsGVZufZ1i/Hh54wLd2C2sIROhK SoLHH9fvS6VLeLAhbwN/7v9nx/gtbypdSsm4rggloUtYkxG6du6EwYMd22uqdJmrD+5OdO7WzzN3 Xb7+Okyf7nvbRegFKnTt3q3fl9Al3DhRdoJdx3bRrUU3x0ZvKl0gXYwRSkKXsCbjRHXqqc5XndU0 psv8QWieMsD8Wte/HM0nNekyihyB6l40yHtFuPj7yr/TfUZ3erTq4XyVojeVLpDQFaFkIL2wJk9/ Hda1e9E8I7n5tTWFLqleRI5AVboM8l4RLrK2Z/HSn17igg4XOH9DKl3CREKXsCZPJ6q6di+6e31s LGzYAKmpcPSovs24erGyUj5II4mELhEkJ8pOkD49HU3TuPjUi50XrgYJXcKJdC8Ka/J0ovJ08nK3 4LXrc40qWX6+Y5uxvpnNJl1GkSTQ3YuHD/t33yIs5Rfn8+VvX3Ja6mkUTCqoHrhAuheFEwldwppq ++uwUSPnx67di57GdLkyTwEg1YvI4a572VfmStfMmf7dtwhLw98bzsQvJ3Jl1ys9P0kqXcJEuheF NdV0otK06tvcdS+6fui6C10HDui3UumKLO5Ct6/MoSs11b/7FmFl04FN7CvYx+YDmzn00CGS4pI8 P1kqXcJEQpewpvr+dVif7kWzvDzH86XSFTkC3b0o75UGS9M0hs0dRu/Wvbm17601By5N8/69KKEr ItUYupRS7wCXAQc1TetZtS0VWAC0B3KAkZqmHav63iTgVqACuFfTtKWBa7qIaPUNXd52L0roikyB HkgvVdEGKzsnm2JbMUvHLkXVtoi6cR7yZrF1CV0Rqbaz0ixguMu2R4D/aZrWBVhe9RilVHdgFNC9 6jUzlFIyZkx4x5tKlzfdi8eO6bfSvRhZAhG6TjnFcV8CeoP11o9vMbL7yNoDF+jvE2+7uSV0RaQa K12apq1SSnVw2XwFMKTq/hwgGz14XQnM1zStHMhRSu0EBgBr/dhe0VB4E7rMc3DV1r341ltw002O k5pUuiJLIEJXz56O+8Z7ZcsW2L8fLrrIv8cSlrDpwCZm/TTLadtXOV/xxQ1f1G0H3g6iBwldEcqb s1KapmlVo485AKRV3U8H9pqetxdo40PbRENW35OV62zztXUv3n47/Pab46Rms7kfoC/CU6C6Fz/+ GObPd1RFx4yBiy/273GEZczZMIec4zlkNM2wf00+fzI9W/Ws/cWgn5PcjSWtCwldEcmngfSapmlK qZo+qeRTTHinvqErPt55HUV33Yuu3QHR0c6VLm/GXQhrCkToArj6an0coM0GBQWwebP/jyFC7pNt nzDzp5l8v/97Zl05i+GnuY6yqaOyMgldwok3oeuAUqq1pml5SqlTgINV2/cB7UzPa1u1rZopU6bY 72dmZpKZmelFM0RE80focvf6bdugW9VitGVl+lejRjKeK9IEKnSB46KNDRsCs38RcvM2zeOMlmdw V7+7GNpxqPc7ktAVlrKzs8nOzg7Ivr0JXZ8CNwHPV91+Ytr+vlJqOnq3YmdgvbsdmEOXEG55E7rM JyhP8zR17eq4X16uvyYhQcZzRZpAhi7jog1jYl0R1hbtWMRD/3vIaVvOsRw23LGBri26enhVHUno CkuuxaAnn3zSb/uubcqI+eiD5lsopfYAk4F/AB8qpcZTNWUEgKZpW5VSHwJbARvwZ02TQTLCS/UN XXFxtXcvujJCV3KydC9GmkCHLpvNsX6nCGtf/PoF13S7hrG9xtq3xcfE0ymlk+87l9AlXNR29eIY D98a5uH5zwLP+tooIQLWvWhmdC8alS4JXZEjGN2Lhw4FZv8i4H4++DP93+qPrdJGpVbJ6ltWc3rL 0/1/IAldwoXMSC+sp6xMr0IFOnSZuxfNY7o0TQJYuAvE2osGo3tRPhDDysETBykuLwbg818/Z2SP kbx9+dsopYiJCtBHoYQu4UJCl7CepKT6TyroGrrqUukoLna81jw5akWFd2ulCesIRveiXHwRNo4W HyXjpQzSGqfZt/1j6D+IjXYzYbI/SegSLuSTRViPMag90JWurVv1ubuio50nRy0vl9AV7v74A9LS an+eN6Ki9GqoeV44ERJbD20ltzC31uf9fPBn+rfpz6pbVgWhVSYSuoQL+WQR1uXL1Yt1CV0PVV2x ZHQXGZWLkhK9y1GEr7ffhlGjArf/mBjnkC9CYujcoXRt3pXoqNrPFTf2ujEILXLha+g6edK/7REh J6FLWJev3Yt1fb0xMNqodB0/DikpdT+2sKZAfmAZoeu++2DevMAdR3iUV5RHeUU5X930Vd3WQQwF X0OXsTasiBiyILWwLn/PSO+JUcY3Qpec6CJDZWXg9m2sZpCQIBWvENmQt4E+rftYN3CBdC+KaiR0 Ceuqb+g6fBiWLdMf12fKicREfVB9RQW0aCGhK1IEcprAEydg7Vr9fScD6oNu+prpTP12Kn1a9wl1 U2pWWupb6JJAH3EkdAnrOf10uP56aNKk7q9JStJvL7pIv62pe3HTJufHCQl6V5TNJqErEhghKNAD 3X/4Qf9glNAVVMdLjvP4V49z8akXc8dZd4S6OTXzpdKVkKCPLxURRcZ0Cetp2hQmTKjfXFmuAaum 7sWePR2X/ScmOipdNhukp0voCndGl0wwqgTGdCMioFbvXs30NdMBOF56nJ6tevLXc/8a4lbVQVmZ foW0Nxo3hqIi/7ZHhJyELmE95eXen6gMtXUvGh+Uv/8OTz3lqHQ1buyYv0uEJyN0BaNKEBenV1Vl Qt2AWrhlIakJqVza+VIAurXoFuIW1ZHN5v30MxK6IpKELmE9/ghdtV292LUrtGypz+WUmKiHrooK vaQv8y+Ft2BWumJi9Ipqfa6WFfVy8yc38/EvH5M1OosLOl4Q6ubUT32XMzOT0BWRJHQJ6/F2ctJl y+DBB/X7tZ3sfvzR0f2YkODoXpTQFf6CWemKjnZMOSKhy+/KK8r5cMuHfDv+W3ql9Qp1c+pPQpdw IaFLWI+3la60NEdgqqioeQBrYqLz/fx8R+iSy7TDm/HvN2RI4I8VHe2YXFf4xfLfl3PFB1egaRoa Gl2bd7X+VYqeSOgSLiR0CevxNnQ1auSobtSnuycxEXbscMxEL5Wu8FZWBl26wBtvBO4YX3wBl1yi By6j0iX84oudXzCh/wSeyHwCgLhoL6/+swIJXcKFTBkhrMcfoas+k6NmZMCsWfrcSxK6wl9ZmX5V YSAZy0RJpcuvisqKmLZmGhedehGJsYkkxiYSExXGtQFfQldSkn5OEhEljN/NImLZbN6Frvh459BV 15PdiBGO+8b0ESJ8+TI3Ul2ZQ5dUunyy48gODhQdAGDb4W30S+/HsE7DQtwqP/EldMXGylCHCCSh S1iPtwPpzZWu+lyqbX5eQgIUFNT/2MI6ghG6GjXSb6XS5bML5lxA+6bt7YtWj+s1LsQt8iNfQ5dU 3SOOhC5hLT//rA9q97V7sbTUuy6mRo3kr8twJ5UuS/sx90c25m0EoNhWTHF5Md/c+o2111D0li+h Kzpan/vNl30Iy5HQJaylZ0/91pvQFROjD6CvqNBDl1GNqI9GjeSvy3CXmwvNmwf2GEboMgbSS6Wr zu5bch/NGjWjRWILACYPmRyZgQv094Uvcw4a1S4JXRFDQpewJm9OVEo5TlIlJfWvdP3f/+mvf/dd mDFDTnThasMG6BPgKQZcB9JLpcvJ/sL9zPhuBpqbRcd/yv2J3RN3k5qQGoKWBVlFhXd//BmM85kv +xCWIlcvCmvyZRyEzeZ992JsrD6QfscO744vQm/fPv2K1EAyj+mSSlc1//3lv6z4Y4X9CkTz1/Q/ TW8YgQt87xqUcV0RRypdwpq87W6IidFPUt52LxonyKQk744vQq+oCJKTA3sMo9IVFSUD6U3KK8q5 c9GdfLPnG+4ZcA93D7g71E0KLQldwoVUuoS1nHYafPih96/3pXsRHNNFuOkWEWGiqEifWDKQjDng jA9V6V4EYMuhLazIWcFTFzzF2F5jQ92c0JPQJVxIpUtYx4IFsHMndO/u/T6Mk5S33YvGZIRSuQhf wQhdhrKyBlvp2nRgE+M/HU+lVmnfdqzkGOdlnMfIHiND2DILkdAlXEjoEtbx2mv6rS+ziZsrXd50 L0roCn/BDF3GlWUNsNK17PdldE7tzAMDH3Da3jGlY4haZEESuoQLCV3COoxxMv4IXd5Uuvr0gVat 9PuVlTU/V1hXsENXA6l0Xfzuxazbt87+uLi8mJlXzOSs9LNC2CqLk9AlXEjoEtYRytBlHsPVrVuD +BCNWMHuXoygStexkmPYKqv/LOUV5azavYpd9+8iPtrx/6pJfJNgNi/8SOgSLiR0CevwR+gy5kzy tnsRZAqAcHfiRHCuPk1I0CfzjZBK144jO+gxowdN45u6/f7gjMG0SmoV5FaFOQldwoXXoUspNQkY C1QCm4FbgCRgAdAeyAFGapp2zPdmigYh1N2LBgld4c2Xf/v6OHlSvzVXujQNDh6EtLTAH99PKior +DH3R5b+tpSru13Nh9f5cPWwcCahS7jwasoIpVQH4DbgTE3TegLRwGjgEeB/mqZ1AZZXPRaibozK lC/r5plDl1S6Gh4j/HizYLq3zJWud9+F1q2Dd2w/WPb7Mv407098tuMzrjn9mlA3J7L4I3TJWrAR xdszUwFQDiQqpSqARGA/MAkYUvWcOUA2ErxEXRkflFE+TB/n6zxdIKErnAWrymVmrnTt2RPcY3vp yMkjfLHzCwCW7FzCrX1vZerFU0PcqggklS7hwqvQpWnaUaXUNGA3UAx8qWna/5RSaZqmHah62gEg fGrsIvRS/bA0iHGSKivz/sM3KkquXgxXoQhd8fH6cSFsqhKzN8xm9sbZ9E7rDcCoHqNC3KIIJaFL uPAqdCmlTgXuBzoAx4GFSimn6Yc1TdOUUjKtt6ifv/3Nt9cfOwaLFulVM28rZlLpCl+hCF2NGzvm dzPC19atvk3yGyALfl7AL4d/YdGORfzlnL9wS99bQt2kyCahS7jwtnuxH/CtpmlHAJRSHwMDgTyl VGtN0/KUUqcAB929eMqUKfb7mZmZZGZmetkMEVF8PUEBbNigf/kyZYCErvAVqtBVVKTfNypdPXpY cimpR1c8yuVdLueKrlcwosuIUDcn8knoCkvZ2dlkZ2cHZN/ehq5twONKqQSgBBgGrAdOADcBz1fd fuLuxebQJYRdRYX/PjB92Y+ErvBVVubbhRjeSEqqHrpAr7o2axbcttRA0zTyivJ4+sKnaRwXpHnM GjoJXWHJtRj05JNP+m3fXvW/aJq2EZgLfA9sqtr8JvAP4CKl1A7gwqrHQtSNPypdBm+vXAQJXeEs 1JUu8/vmjz+C245aFJUVoVASuIJJQpdw4fV11ZqmvQC84LL5KHrVS4j682fo8rXSJQPpw1OoQteh Q/p98wekMb7LIuZunEujGB/+GBH1J6FLuPDh2nwh/Mwfoeu77/RbXz54o6Kk0hWuQl3pMn9AlpQE tx21yN6VzcPnPhzqZjQsErqECwldwjr8EbrattVvpXuxYQpF6DKP6TI+INu2tUSl6+tdX9PyxZa0 eKEFn2z7hCu7XRnqJjUchYWwfLlvF/VI6Io4ErqEdfgjdPljKSEJXeErFKErLs4xOWpZGcyfD2ee GfJK18nykyz7fRnXn3E92yZs4/BDh+nSvEtI29SgHD+uzz04cKD3+5DQFXFkwWthHf4IXYmJ+q2E roYpFKHLWGQd9A/IRo30rxCGrvzifNKnpxMfHc9717xHi8QWIWtLg2WzQXKyb/uQ0BVxJHQJ6/BH 6IqN9b0dErrCV1GRb9053nANXbGxzrPUB4mmaWw6sAlbpY2f8n7irFPOYvWtq4PaBmFSXu77GqAS uiKOhC5hHf68etGXE5UsAxS+Qh26jHnCQlDpWrt3LX+a9yc6N+8MwE29bwrq8YULm833PwIldEUc CV3CGg4dgq++gkGDQt0SqXSFs1CHrhBUuk6Wn2TxjsUs+30Zo88YzZuXvxmU44pa2Gz+qXQZS0zV labBxo3Qp49vxxYBIQPphTX8+9/w++/+q3T5QkJX+LJK6ApipStrWxYPL3uYY6XHuL7n9UE5pqgD f3Uv1ncR9Z9+gr59fTuuCBipdAlrMD6g/BW6fFn3TkJX+CoqgrS04B4zAN2Lvx75lQ+3fFin567I WThkYNMAACAASURBVMH4vuN57PzHvD6eCAB/dC/GxdW/e/H4cf1W00Ap344v/E5Cl7AG40MrygLF Vwld4auoCE47LbjH9NS96EPoevvHt/kx70cGpA+o9bnntDmHMT3HeH0sESChGkh/9Kh+e+JE8Ku+ olYSuoQ1GOMW6ltKDwRZBih8FRXpk5UGk6fuxWPHvNpdUVkRb/74Ju9e/S4juozwY0NFUAVzIP1f /wrPPKM//8ABfduxYxK6LMgCZQUhcIQufw0+9qV7UZYBCl8lJb6tRuAN19AVF+fTQPp1e9eREJPA sE6yjG1Y89dA+rqErhdfhD179PtG2Pcy9IvAkkqXsAZjGRWrVLokdIUnY0xVMLmO6arHQHpbpY2r PriK46XH7dsOFB3g/3X/f7I4dbjzR/diXFz9z4mFhfqt0c0oLEVCl7AGI3RZYL06CV1hzOjeCyYf pozYfng7Ww5tYe5Vc52292jVIxAtFcHkj+7F1NS6hydj0LxxLt22Dc4/37fjC7+T0CWswSiFW6F7 0fwhKsJLqENXPa5eLCwt5JL3LmFw+8EMbj84CA0VQbN3L1x+OVzp4wLjrVtDXl7NzzH+QDRui4qg Rw/4+Wffji0CQkKXCL2KCv2vMrBG92KTJo4SvQgvxpiqYDJCl6ZBQYH+/vFw9WKlVkmJTd++bt86 0hqnMfOKmcFtrwi8I0f0W1/naqtL6DLOmcbYr6IiSE+Hkyd9O7YICAldIvT27oVmzfRuvX79Qt0a vS27d4e6FcIbxpiqYDJCV3Gxfj8+Xq90uanaTlo2iZfWvkRMlH7qvf+c+2XsViQyKp87d/q2n5Yt 4fDhmpdIM8KWEb6KiqBpU6nWW5SELhF6hYX6ScK4+sYffOlebNYMNm3yX1tE8ISye/HYMf29A07d i+UV5Ww7vA0Njexd2Xx+w+dyZWKkMypcBQW+7ScmRp/2obDQ8d5yZYSu8nL9vPfbbzBkSNDX/hR1 I1NGiNArLoaEhFC3wqFZM7ncOlyFsnvRHLpMA+nf2/weF8y5gLEfj0XTNPqlW6CaKwLLCDz1XTfR ndrOR+buxc2b4ddf9QmCpdJlSVLpEqF38iQkJoa6FQ4SusJXKLsXq0LX2r1rObH/G846doAVv3zM J9s+YdJ5k3hg0APBbZcIHSN0+WNcVW3nI3P34rZtcMMN0LEjfP+978cWfiehS4ReIEKXL92LTZtK 6ApXIe5e1Jo1Zfi84YyNPYuuhYeZt2ke0VHRXNr50uC2SYSWP7v26lPp2rULOnWSK7AtTLoXRXB9 8031E4jVuhcbN/ZPt4AIvhB0L2bvWU1Z6Uk+W/cum0v3kByfzL+veZu2cS34eNTH/Gfkfzi95elB bZMIgc8/d/yxF8zQZR7TZbPp7/+YGJlr0KIkdIngOu88eOwx521Wq3Q1buyYYFCElxB0L05a+ThU VGA7epiixFj+MfQfPi94LcLQZZc5zhslJXD22bBmje/7TUqqeQobc/diRYUeuKTSZVnSvSiCz/UE cvKk9SpdErrCUxC7F9fvW8/bP77Nz/nbiK2Aq0+5AJKLGNTrBn0WcSusriCCwwg4lZX6bUkJnHUW nHOO7/v2MP2Inbl70WbTp5aIjpbQZVFS6RLB5zq4tLjYWgPpk5L07kVfqmUiNILYvTh341xOlJ/g 3evmowAOHXK+elEqXQ2HEYqMAOTPhddrW1LKtXtRKl2WJpUuETw336zfmkPXa6/BjBlwzTX+PVbb tt6/NjpaP9FZLQyK2gWwe3HGdzP4zy//sT/emLeRhdct5IKOF+jdOv/8J7zxhv5N44NS0xxr4onI 5Rq6iouDH7pcuxdlTJclSegSwTNnjn5rDl1//rN+e+qp/jvOwYO+hyWji1FCV3gJYPfi7A2zuan3 TXRr0Q2AmKgYzss4z/lJRqUrJgaiovyz6LGwPtfQdeQItGvnn33Xto6nu+5FqXRZloQuEXzm0GX8 Fdenj//237Kl7/tIStJDV6tWvu9LBMfKlY6/9P3ozkV38sXOLzh44iA39r6R5Phkz082zxpudDFK 6Ip8rqErLw/69/fPvutT6TK6F2VMl2V5PaZLKdVMKfWRUuoXpdRWpdTZSqlUpdT/lFI7lFJLlVIe 1i0QDZo5dDVpot/26BGatnhS21+XwnpycuCqq/zanWertPHJtk9YeN1Cdt2/q+bABc6hq7YB0CJy uIau/fv1xar9obZzkXHskhLnMV3SvWhJvgyk/xfwuaZppwO9gG3AI8D/NE3rAiyveiyEM/McWOnp +q2Vrl6E2v+6FNZjs0Fqqt92t+vYLhKfSSQpLon+6f1plVSHqqc5dB054p+qq7A+c+jauRO+/lqf Fd4fPJ2LSkr0PzDMs9/LlBGW51UdXinVFBisadpNAJqm2YDjSqkrgCFVT5sDZCPBS7gyV7patYIl S0LXFk8kdIUf4698HxSUFrCvYB8Ay35fxiWdLyFrdFbdd9C0qU/HF2HKHLry86Ffv8CHLuM8akyc evKkTBkRBrw9Q3UEDimlZgG9gR+A+4E0TdMOVD3nAJDmexNFxDGHrhMn9PFTViOhK/yUl/scuu5a fBdf7/qaxnGNAXhgYB3XS/x//w8++si50iUaDqNbsaxMn6vLn+P4PHUvFhfrtwcOOB7LlBGW5+0Z KgY4E5igadp3Sql/4lLR0jRNU0rJREeiOnPoOnnSmqErLs5xIhXhoR5XCu4v3M8P+3+otv3bPd/y +fWf0zOtZ/2OvXBh/Z4vIou50qVp/g1dtVW68vL0kGVUumRMl6V5G7r2Ans1Tfuu6vFHwCQgTynV WtO0PKXUKcBBdy+eMmWK/X5mZiaZmZleNkOEJWPWZtArXVaclkEqXeGnHpWuJ756gh9yf6BNkzZO 2we2HWifEsJnEyfCSy/JXF0NgetA+mCELnOlKyVFf1xRIVNG+EF2djbZ2dkB2bdXoasqVO1RSnXR NG0HMAzYUvV1E/B81e0n7l5vDl2igTI+iKR7UfiLh0rXlzu/ZOuhrU7bVuSsYN7V8xjYbmDg2jN9 OrzySkgW4RZBtm6dfmuELn/+e3vqXjQqXV9+qU8Gba50yZgun7gWg5588km/7duXARD3AO8ppeKA 34BbgGjgQ6XUeCAHGOlzC0XkUUqvdkVHB2axa3+Q0BV+PAykv2vxXQztONQ+Tgvguu7XceYpZwa+ TbGxEroagh9/1G/LyvTzWzC7F0+e1CtdJ0/q51XpXrQ0r0OXpmkbAXezvw3zvjmiQYiOdpTBpdIl avH696/z88Gfa33eZVvXURmt+OLzfPs2TdM4eOIgr494neio6EA2073YWJg7F/70J+jUKfjHF8HT pIl+zoiKCk7omj3bcd8IXbGx0r1ocTIjvQieZs3g7bfhhhv0v8jKy/VbK1YBJHRZgqZpTFo+ib8N /hvxMfE1Prdl/A7KE+Orjcl6/9r3QxO4QH9v//nPMG6cHr5EZLLZ9KXDSkv10BOM7sV333Xc79wZ srL0YC9XL1qahC4RPBUVMGyY/pdgRYV+gkpMtOYgY7l6MaRm/TSLBVsWYKu0kRCTwAODapm6obQU 5twDzz/PwAETgtPIujAqHvIBGNlsNkhOdlSbglHpMuveHWbN0qttRugylgcSliKhSwSPMVuy0b1o 1a5FkEpXiM3ZOIfLOl9Gz7SetEluU/sLcnP1W6utcyihq2Gw2fTAY4xR9fc8Xe7ORR06wNix8PTT +ooeLVvCoUP6+TUxUb+asbJS/yNXWIb8a4jgMV9ZU1kpoUu4pWkaG/I2cHOfmxl+2vC6zZllnvvN SoxupoULZWBzJDMqXY8+qgcff3YvGgunu4qKgm7dHM/54w99+gjzQProaFiwwH9tET6T0CWCx1ii wuhetOocXSBjIkJo1/FdNI5rTMukeqxbePy4fmu1fzNzxePw4dC1QwSWEbpADz/BunqxSRPHcwyu V/DKxL2WIqFLBMdddzmmiTC6F4uK9MGnViSXXAfN1G+nop5U9q+O/+rIuRnn1m8nxvpzVhvHYv7w bd06dO0QdfPBB84BpjZKwbJljj8oAfbvD94yQMayU40aOba7didGh+giEuGWjOkSwfHf/+q3Sjm6 Fw8ehDSLLs8pkwsGTGFp4f9v78zDm6q2Nv7u0pGWtkChLTPIIIgyC4oDAiqO4IyoICjOE5ePD1Gv ouLweR1w4nr14jxdr3gRBRXxCkURlaEULTNlpi20hFI6pe3+/ljZnJM0SZM0yTknWb/nyXOSk5xk Z2dnn/estfZaKDpedOLxsp3L8NnVn+GaU64J7A3tdq3+nNkWP5hxZS7jmeXLfR9D6qJs1y6aK9Tj PXuAfv2C1yZXS5fdTsmlKyq0Aut6oaisvoom1iNlggv/Gkx40F99KfdiYaF5r/6VNY4JOjd8cQPW HlyLpNgkAEBcszgM6zAs8De8+mpg0SK6b2ZLF2N+VGkdX9i7VzumtlYrbxZsS5cSXaqKx6WXArt3 0/ykYmL1oqtzZ9qqFdgsukwF/xpMeNCbuJWgMbPo4pguv5FSImd3DiprvZ+4ft3/K3679Td0Tu8c nA9W2cAB84kufZ3RYU0Qlkx48GdBhloxW1jobOkqLQ2u6FIhGaqywdq1QEkJrVhUllTlXmzRglY1 AsBPPwGnn86iy2Twr8GEB1dLV309TRy9exvXJm+wpctvtpZsxWWfXIYzO57p9XWju41Gp7ROwftg /dgym+jq1Inq8p1yivlcn0xD/BFdhYW0LSgg0XXzzcCSJbSvZcvgtktZu+LjNUFXWandV5Yufc5D JcRYdJkK/jWY8ODO0lVZSVdrZoQD6Rvl0z8+xeEKbUXexqKNGN1tNL647ovwNkQ/tswmuq67jlaP vfgi8D//Y3RrmMbwV3QNHQrk5pLoGjQImDsXeOCB4MZ0AZroatHCOU7QVXTpL0CU6MrJ0VyTjOHw 6kUmPFhNdHEgvVdsVTbcsugWbD68+cQtrlkc7h5yd/gbo04006cDM2aE//O9oWJuUlLY0mUF/MnN t307cN55wL59Wg5CtRq7V6/gtksfTK93Xbq6F91ZujZvpkVLjClgSxcTHvQmbuVeNLPoYktXA6pr q/HY8sdQXVuN4opi9M/qj9cufs3oZmmia8oULYjYLKiTcHIyiy4r4OuF1vHjVHB6/nyyYirRpQRR 69bBbVdCgjZ+9KLL1dKlz3uoTyNx/Hhw28MEDIsuJjwMGECmeMDZ0qWfGMwEW7oasPbgWvw7/9+4 Z8g96JTWCXcOvtPoJhHKiupPfqVwwaLLWvh6obVzJwXMn38+/a52O4ku5Z4MdukdvaVL70JXoisx kSxa+vlUf981jQRjGCy6mPBQWwuMG0f3leiqqmJLl4XILczFyC4jMe2MaUY3xRl1gjOj6FLuRRZd 5mb2bOCKK3y/0LLbgf796XeNjaULyNjY0OVli4/XRJeU2n51wREX19ClqRddKnkwYzgc08WEh5oa bUKygnuRLV0NyC3MRf+s/kY3oyFmFl1qfCclsegyM48/ToWjfb3Q0s9nCQnkvouNBSZOBLZtC377 9Jauvn2dn9uyxf08GhcHjB1L99nSZRpYdDHhQT9JWSWQni1dAIAdpTvQd15ffLTxIwxqN8jo5jTE zO5FVY9PJapkzMvevf5ZupRrT8VLqULT3bsHv2160eU6jnr29HycagtbukwDiy4mPLiKLmXpMmtM F7sXT/DTnp/QrWU35N6ei6HthxrdnIYoS5cZS+6kpZGVgUWX+RFC+430SW3doRddilDmw9KLLn9W WKo5zJ9M+0xIYdHFhAdX96LZY7rYvQgA+HXfr7j1q1txfrfz0aN1Dwgz5vpRbTKj6AKA1FTtQoOF vHlJStLEycMPe3+tyg6vJ9Siq6aGcoL9+CPlBBsypPHj1HjzR6gxIYUD6Znw4Cq6KirM7V6MUktX bX0t9pftP/H4m+3fYOrAqbh36L0GtqoR1O8U7BVjwUQIGv92u3POOsZ41MVVfLy2+nDlSs+vr64G Dh9uaOkK5fhTli5V8uqFF4Bzz238OGWxY9FlGlh0MeFBlbAAgNWrgVGjSHCZVXRFqaVr7uq5mJMz B2mJaSf2vTLmFQNb5ANmy0Lvifh4su6a1aUerajEoXa7JrpOO83z6ydPBj75RFuNHQ6U6Nq5kx5n Z/t2HIsu08GiiwkP7k42Zj4BRZmlq17WY+Xulfhux3d49aJXcVO/m4xuku9YRRw3b07W3fR0o1vC 6MnLI0GsClU/84xWzNod69fTVu9enDIltG1UoquyEnjuOe/B83rYvWg6TGyPZyIKdwIrNta8rpYo s3St2rsKV352JQQEzu3ig9vCTHTpYnQLfEOJLsZc7NgBnHoqUFREgrh5c+81GEtLaesuM3yoSEqi NtXU+LdKV1m6eBGHaWDRxYQHd6LLrK5FIKpSRuQfyseba9/ENX2uwdKblqJTWiejm+QfycnAggVG t6Jx1ImTMRcVFUDLlproSk72XDbn+HHNHRlO0ZWeTqtgq6v9E11s6TId7F5kwoO7lYpmFl2xsVFj 6XpixRMorSzF4yMeN7opgVFba16LqZ7GLCiMMVRVUWqP+vrGRdfq1dp95V586y1g9OjQtjE9nXJt +Su6HnoIyM9n0WUiWHQx4cGdpauoyJi2+EKEWbp+3vMzvtzypdvnlu9ajmUTl6Fv275unzc9dXWh Xa4fLNi9aE70cXaNuRerqihdw9q1mnXr1ltD38b0dGDXLv9FV/fuwO23AytWuH/+hx+Arl2Bbt2C 0kymcSwwUzGWR0r/JwujibBA+ld+ewUJzRLcCqtHznkEvTN6G9CqIFFbaw3Rxe5Fc6IsXQDQubN3 S1d1tVbEPNQuRT2BWroA58SqroweTaknli9vchMZ37DATMVYnpoamqDMnEfJlQgKpN9zdA8++/Mz bLxzo3WtWd5g9yLTFKqqtBQMAwbQ77RyJbBwYcO0EDU1WmmncIuuf/2LPtNfy1pCAvDpp8A777hf Le5JYDIhwUJnQcaymDk1hCciyNK1bOcyDG0/FKe0OcXopoQGq1i62L1oTiorNUtX//5k6QLcp4Go rnaupxkuTjqJtu4y4TdGVRVtS0rcP88XAmGlSTOVEKIZgDUA9kkpLxNCtALwLwCdAewCcK2Ukitt RjvduwNlZUa3wj8saukqrSzFhR9eiOpazZ1QdLwIDw5/0JwlfIKBVWK6YmKAd98FbrzR6JYweqqq tJiuvn2BQ4fovrsxVV2tibJwWleV6AL8dy+qtBGe6kmy6AorTZ2p7geQD8Ah/fEggO+llM8JIWY6 Hj/YxM9grM7hw86Pd+ygSeS774xpjy9Y1NK1o3QHKu2V+Piqj53292rdy6AWhQGruBdvugn4y1+M bgXjSmUl1ccsKSFrZPPmtN+T6FKiJ5zW+5gY4J//JNeiv6LrhhuA++7zfBHJ7sWwErDoEkJ0AHAx gKcAqJnkcgAqs+J7AJaDRRfjSkYGbX0tZWEEFrV0FZYXokt6F5yW6aWMSaRht1vD0tW+vSXHVMSj wh9ataLHypIVGwvMmgVs3Ah8/TXt04suJc7CRV9HPKa/oismhuZcT+Wy2NIVVpoyU70EYAaAVN2+ TCmlygNQBCCzCe/PRAIqnkCPikkI96TlDxZIGSGlxMFy53IlW0q2ICsly6AWGURFhbaizMykpADl 5XTyC2cQNuOdykrnnIHqvhDA558D27drzxkpuvr0oW0gFxhxcc6CXz8GOYdXWAlIdAkhLgVQLKVc L4QY4e41UkophJDunps9e/aJ+yNGjMCIEW7fgokEjh5tuE/92c2eHNXkouv9De/jriV3IS0hzWn/ X8/5q0EtMojycmuJrvh4YM0ayvfEGI/rQh8V+2i3NxxXRoquFi3IahVI7U59suf9+4EOHSiVjxBs fXXD8uXLsTxEaTQCtXSdCeByIcTFABIBpAohPgBQJITIklIWCiGyARS7O1gvupgIx+ZmHYWKvwnn 6h9/MYF7cc/RPdht2+3x+SXbl2DOeXMw7YxpYWyVCbGa6AK8F1Rmwktlpfv4LHc5saqrNdFjhKU+ 0AvB2FjNvaifkxMS3HsjohxXY9DjjwevWkdAoktK+RCAhwBACHEugP+RUt4khHgOwCQA/+fYLgxW QxmLov7gr7/uvP+00yh41ayYwNJ13efXobq2GsnxyW6fjxExOP+k88PcKpMhJQmZZPd9ZCri4zUr iqeVZEz4cVeiDKDFPq65BVXB6ZEjgWHDwtO+YKB3L+rHXnw8i64wE6zoU+VGfBbAZ0KIW+BIGRGk 92esis0GXHABcNddzvs3bDCmPb5ikKXLXmfHp398itr6WuQV5eHg9INITTCxODWamho6MZrZaqqn RQugtJTEImMO3Fm6fvgBmDPHeQ749VfN+vXDD+FtY1PRuxfVxaSU1qoSEiE0OTmqlHKFlPJyx/1S KeVoKWVPKeUFnKOLgc0WWAyC0Rhk6fp578+Y9cMs5OzJwfQzprPgagyruBYV6r/Aoss8uLN0JSbS fhV/Wl9Plq2KCmsKFb17UW3r6rSLFR6PYcMC66wZS2NV0RVCS9f6g+vxef7nbp/LLcrFuJPH4bWL XwvJZ0cEH38MXH89ueqsJroyM4GdO/kkZybcWboSE51XNSqhcuyYNUWX3r2o3Ik1NdqF5caNFPLB hBwuA8SEFiuLrhBZuv6+5u/YXLIZzeOaN7id2eFM3DXkrsbfJFqRkpI9HjtGj0tKgJYtjW2TP6gc dZ5yJjHhx52lq107YM8eLf6ppoa2VhVdekuXXnTZ7UCXLsCKFYY1LdpgSxcTWqwqugJ0L365+Ut8 /MfHXl+zfNdyfHHtFxjeaXigrYte1Mnv6FFaiFFYaO4ku66o/4Jr8PLEiVSQ2AqZ9SMJJURcc19l ZZF1aOtWeqxWnVpZdLmzdNntwOjRHEwfRlh0MaHFZgM6dTK6Ff4ToHtx/vr56J3RGwOzB3p8zXWn XIdhHSy08slMqJODzQZ07EiiK8tCyWBVsWTXk9wHHwCvvWbuFb2RiKeViwDQrx+wdCndV/kGrSq6 PLkXa2poTLLoChssupjQYlVLV0wMxQzV1zdcNu6B/EP5+GrrV5g7Zi66tewW4gZGKXrRBZDoyrRQ 4Qt1gtef5JQLi+O8wo+nHF0AZYBXomvKFNoeO2adlbJ6vLkXWXSFFY7pYkKLzQakpTX+OjPip7Xr vwX/xeW9LmfBFUpcRdfx49bI0aVwJ7r0q8mY8OLN0vXkk8CuXXT/l19oW15uTUuXO/eiKnSdksKi K4ywpYsJLVa1dAE+x3VN+XIKFmxagKraKsy7eF4YGhbFdO9O29JS2tbUWEvUqxN8ZaW2T4kuLscS frxZulJSGq6Mtbp7sbgYmDGD9p12Glm5kpKAF1+kDPtPPmlsO6MAFl1MaLGy6PJg6aqwV6DCXnHi 8dIdS7Fy8kp0TuvMebVCjfo9ih0VxtyVajEzrikIAG1xAIuu8ONad7Ex7HZrjTdFbCx914ICyrS/ bh3tj4nRvv/ixSy6wgCLLia0qFVmVsSNpUtKiV6v9UKFvQICVNIlKyULp7Y9FUKVeGFCgxInAMVy AdYTXcMdK1b134UtXcahz8XliXbtgAMHtMdWGm+KuDjg9ttJVLVvr4mumhpNdHXsaFz7oggWXUxo qaoypjBsMHBj6SosL0SlvRKHZxxmkRVuVAwKYF3RdfrpwEsvabFCAIsuI/HF0rV/P9Crl5Y+wkrj TaHc8d9/T99FUVOjZd2vq7NesmELwoH0TGjx13xvJtwkSM0tzEX/rP4suIygQnPp4vBh2lpNdAG0 +k1v6WL3onH4YukCNGECWG+8AcCFF9J29WpK0DtxIj1WQgsg9+I55xjTviiCRRfjG/X1mknaV6Qk 0WXFSQpw617MLczFgKwBBjUoylm5UruvrEPV1dZbwu8qutjSZRy+XhRaXXTdeivw1FM07lJTgffe 0763TVciWe9GZUICiy7GN7ZsAa65xr9j7HYSLlbNsu3GvZhbRJYuJswcOED1FgFg/HhNtNTUWO8k GB9PYlHBoss4vKWM0GN10QVoYR7KfagWOF17LXDLLXRflaliQgbHdDG+UVmpmaF9xcquRQDYtw8H VnyNNzsWn9iVszsHj57zqIGNinJ69wbuv59ugPXdi/v2AbNn030WXeHHW8oIPfoyQb6INDPiKrp6 96bYyI4dgTffBObPb7rVuKAAOHSIYhcZt7Cli/GNykrnmBpfsLroAtBu4t1YtXfVicfThk3DyRkn G9iiKEVZg44eJauD3r1oZdE1cyawYAHdZ9EVfgKxdFk1nlN9TyW6PvpIK3QdEwOcfTYwrInlycaP B4YObdp7RDhs6WJ8o6qKVo9J6fukEwGiCwDuHnI3xp481uhmRDdKpNhszqLF6qJLv0yfRVf4OHwY ePBBSp/gb0yXVXG1dGVnOxeLv/pqYNu2pn1GBMz3oYYtXYxvVFZqgfG+EiGi68LuFxrdBEZZtioq rG/pSkjQRJd+eT6LrvCRm0vutKVLtSLk3ohE0eWKm9XafsPpJhqFRRfjG0ps+eNijADRVZUUh8RY a3+HiECJrNhY64suvaVLHyfJoit8qDxvq1f7VjFDlZ+yMq7uRVd8LHvmFRZdjcKii/ENVStOn6Cy MSwuuj6ePBj7z+pndDMYgERK375AUZGzaDl82Horrlh0GU9hobaqumXLxl//wgvApZeGtk2hRgXJ n3SS++c9lD3zCymbdnwUwKKL8Q1l6erc2fdjjh2zVDb6elmPvvP6IuO5DGQ8l4H/VK5D62Y+uB6Y 0GO3kxuoVSvN0mW3U4xX69ZGt84/lOgqLwdefx3o04f2s+gKH0VFVPAZ8M3SFR8PtGkT2jaFGmXp 8uRO9dfSdfbZwFtvOe/T559j3MKB9IxvKEuXP+Tn07Jkk2Ovs6PCXoFdtl04Wn0Um+/ZDABIf/fN dAAAIABJREFU/HYZUuZ/YHDrGAAksFRcjRJdxcV0IrRaHjglulRSyilTgB9/dC6CzYSW48fJZbh+ vW+iC6AVflZmwADvwt5fS9dPP9EFz9Sp2j51cV5fb/3+ChHcK4xv+BNAr9i0SbuKNzFjPhqD9i+2 xznvnoMLul2AjOYZyGiegZQWrZ2TWDLGoa8Rp0TLoUPWtD7Ex9P/SbkWTz6ZSrCMG2dsu6KJykpy VwO+F3q+4ALrx3Z5u0AJJKZLhY+sW0er2lWNR76A8Ahbuhjf8NfSVVICbN/e9LwvIUJKibyiPNjr 7fh9/+/YM20PWiW1cn5RQgKLLrNgt2sxKcrStWuXNQN3U1JoQUp5OTBwIHDJJUa3KPIpKaHYLWV9 qawkAeVPDNK119ItUgkkpkuJLlXAPT+ftlasFBEm2NLF+Ia/lq6LL6aK9iaN6VpfuB7D3x6O27++ HRecdEFDwQWw6DIT7tyLV1wB7NxpbLsCISWFBFd5uTVFoxXJyADmzdMe+5oUNZoIJGWEEl3quMxM irvk2C6PsKWL8Q1/LV3qZGjSiW1/2X6c2+VcLJ6w2POLWHSZh5oazdLVrBm5MqS05u+TnEyCa/Vq 6xXrtjL792v3KytNOzcZRiDuxYQE6teiInrcvz+wahWLLi+w6GJ8Q2/p8iVIUj1vUktXYXkhslOy vb+IRZd50Fu6ALpvxRxdAJ3c4uOBWbO0fa+/Dtx9t38VHxj/0PerrzUXowl/3ItHjtA2Lg7o0EHb 36MHsGYNiy4vsOhifENv6bLbgW++cQ78XbIEGDVKOwkq0RWmq8kl25Zg/cH1Pr8+Z08OhrQb4v1F +nxKjLG4ii41vqyaKdw1oPmuu4AZM2hVHbscQ4NedLF7sSHK0lVfDyxcCFx5pefXbthAW9eL0qQk njcbgWO6GN/QW7qOH6d4Gv0KlUsuARYt0h6H2dI1fel0HDh2ABX2Cp9ug7MH47pTrvP+pjx5mAe9 exHQxFZ9vTHtaSoqyfAqrZg6OnYECgqMaU804GrpYtHljLJ0bd4MXHUV5Vn0xN69tHWN9Y2P53mz EQKydAkhOgJ4H0BbABLAm1LKV4QQrQD8C0BnALsAXCultAWprYyR6C1d6s947BgFTaoVQO4sEQGI roIjBXgy50lI+LaySEqJ3bbdmDtmLuKaBdHyEYyyGExw0KeMAIC0NKCszLqiCwDOOQc44wztcb9+ VBPw1FONa1Mkw6LLOyqQPi+PHuflAcOHu39teTnFJrqKroQEFl2NEKh70Q5gmpQyVwiRAmCtEOJ7 AJMBfC+lfE4IMRPAg44bY3WqqoB33wVuvlkTXWVlJLrKyuixu9wsAcRNLN62GHvL9mJC3wk+HzO+ 7/jgCi6ARBdnCTcHBQXO+ZTS0uhq26qiOCcHyHaJKWzXjnKPMaHB1b3IMV3OqPlO1aVUwfHuKC+n FaFs6fKbgESXlLIQQKHjfrkQYhOA9gAuB3Cu42XvAVgOFl2RQWUl0KULkJXlLLoA7U9q0xk1la/f YZ34y3d/we8HfvfpowqOFOCRcx7B5AGTg9DwJsCiyzzk5QEPPKA9Tkujrac6cmbn7LMb7ktMDCwJ MeMbTz4JPPEE3WdLV0OUpUsl7dXXBXWlvJzSQ3z+ufP+rCwWXY3Q5EB6IUQXAAMA/AogU0qp5HER gMymvj9jElTgaVycs3sR0P6cetFVWUkZ6TMzUS/r8da6t7Dg2gVIivVtohvcbnAQGx8gLLrMQ0kJ 0Lat9rhTJ+Dnn4GlS41rU7Bh0RV61OpQFl0NUeEUvoqusWOB337T9v3yCzB0KPD3v7Po8kKTRJfD tbgAwP1SymNCZ76VUkohBJccjxSUOV4vupSly3GiWPTz26j75FH0OVCLXuW16LjoPNQtFqiX9chM zsQFJ11gUOMDJC6ORZdZqKhwjg+86CLgk08ia6VfYiKJSyZ0qAUZ7F5siAqkLy+n2KzGRFePHkC3 blpOxl69SNCq/mXcErDoEkLEgQTXB1LKhY7dRUKILClloRAiG0Cxu2Nnz5594v6IESMwYsSIQJvB hJhKeyUkJBIrK1AdCyTExsJuO4wEANWlh1Bnr0BMuQ2JAOI3b8OYLRRjU37v7fj1zkdPvE+LeA+V 7c0MW7rMg6tl4qabgOsaWX1qNdjSFRr0cX9qQVBsrPUKpYcavaUrK6tx0ZWS4nzRk5xM29RU7ysf LcDy5cuxfPnykLx3oKsXBYD5APKllHN1Ty0CMAnA/zm2C90c7iS6GPOydMdSXPzRxYhvFo9thyox 4p3TsdBWg/kL78WLAKZ9five3XUHxmypw1NtBPoXxwBdOwEFBUi5/GqktGhn9FdoGurKjxNWGo+r pQuIvGzuLLpCgz6XVEUFbdm12JBmzWhxyoYNwOmnuxddd9wB/P47JURNSQH+/FN7Tv0f09OdQ00s iKsx6PHHHw/aeweap2s4gBsBnCeEWO+4jQHwLIDzhRBbAYx0PGYsyI7SHfh669eYceYMVDxcgfax rbBt5j6c0q4fXjyTBuC8s59FxUPH8cU5r6P3WeOQVd+c3CM7dgCjRxv8DYKAEDQRWTktQaQQDTE4 LLpCgz6+qLKSs9F7olkz4OhRui+l+7qm330HrFunWbrcrR6OANEVSgJdvfgTPAu2CDjbRjclFSU4 Zd4p6Nm6J1656BXa6Smm67PPgKlTgQkTKM9QTk5kxdkoFyO7IoxDSrJQsOhiAkHfpxUVlEMw0sdS IMTFaSJq4kTg3nvpsX7uUzkZvRVrZ9HlFS4DFOXsPLITuYW5Tvs2HdqE09ufjpzJObRDSu3qsK4O +OMP2n/sGHDgAN1PTKRip5EquqxY4y9SqKmhid+qJX98hUVX4GzZQkHd7saIPrGzco3x6rqGqHl7 6FDgnnuARx6hOT49XXuNsvo3JrqWL6eqCyrOizkBi64oZ/rS6Sg+XozMZOfsHlMHTtUe2O100ouN pVxdX3xB+9XqRUATXZF2FcnB9MYTDa5FgEVXUzj5ZODVV0ksuKLiuADgllvC1yaroUSU+q8pi5U3 0fWPf9C4XbNGe012NqVymT0b+NvfwtJ0K8GiK0rYULgB3+34rsH+VXtXYeXklejZuqfng/UnvSuv JNGVmgosWwb897+0X4mulJTICjpn0WU87oLoI5HERGerDOMfngRrRQUweDDNS7/7lqA5KlH/MRXv 5s5N6OpevO02ejxxovaafv2096moAFavBkaODF27LQaLrijh+V+ex9Gqozg542Sn/fcMuQfdW3X3 frA+p40SX5mZwLZt2msSE6lm3KuvBrHVJoBFl/F4c2VEEtnZwP79RrfCungKAVAXjXpRdsMN4WmT lXCNW3UnunxxL3bpQomMExOBuXOBhx/WxBrDoisamL18NpbuWIolE5ZgULtBvh+4axdZskaO1MSW uhrKynIWXQkJJFD0VzyRAIsu47HZgJYtjW5F6OnenWovHj2qlTliGkdZr/QpRBYvplqWvXoBjz3W 0FI6fnz42mc1VDB9ejpw5Ijzc0p01dV5FrlCANOn01jmubMBgaaMYCyCrcqG51c9j+dGP4f+Wf39 O/j55ykGwp2lKyvL+bWpqU1vrBlh0WU8rnElkUpMDFkJdu82uiXW4uqraau3plx6Kbm+1q6loO6k JOc0EZwywjNKWKWmOsft6p9rLIxEWcm4wkIDWHRFMFJKTFgwAf2y+mFS/0loFuNn2gM1ienz2ugt XXpYdDGhIlpEF0D/K1VAPpJ4913gtdeC934FBcCoUbRCrp0jCbOKh9u+nbZdu2rWr2bNnIujs+jy TKtWtHUnutRc2Ji7X1nJSkuD3z6Lw6Irgtll24X1hevx4RUfNu2Njh/X/mSeRFekri5j0WU8LLqs zz33UN6nYJGbS6EPxcW0chHQVilu2kTbVq20fceOAS+9pB3Poss9W7YAr79O91u0cBZdUmoxXo2J rp49gc2b6dzBOMGiKwJZkL8Aned2xrD5wzC0/VB0bdk1sDdS5mN90KR+ObGeSM1jxaLLeI4cYdFl ZVq0CP7JV/VRdTXFwJ10EuWV6tKFsqYDJBBUKRsV2K1g0eWenj2BNm3ovmsNxQMHyAUONC66+vSh jPauMWEMB9JHElJK1NbX4tvt32LqwKm46bSbkNE8I/A3VGKjrKyhpSspyTmVRKROYiy6jKeoSHMh RTpZWZG3gtFb4eRAUUmZq6rIhXX4MD3evZtSFGRkkBgrLwcuvhj45z+dj4/U+SqYpKZSLUbFvn3A wIGUk6ux3zQ+ngTchg2hbaMFYUtXBDEnZw4S5iTgg7wPcFH3i9A5vTOS4wPMCFxfT4nvAPqzKdHV ogVt4+Np4ho1ih736NG0xpsVFl3GU1jY0J0dqWRlkRssL8/olgSHM84I3nvNmgUMGED358yh7dat wIoVwBVX0ONevSh4PiODxFh5OQl2V0t8pFrmg4lrTJf+f6ji5rxxyimhaZfFYUuXRbHX2bG91Hng /1DwAxaOX4jLe10e+BuXlZGwKikBWrem286dmuhSZR3U1fiyZYF/lhVg0WU80SS61P8sUgKQV6/2 /nxFBbkelUvLG2+/TTFcBQVU7ueMM4A9e8j68s47dLv/fopLSkujceMpnxTXUm2cFi2c3Yvqf5id DRw82Pjx0RIS4Cds6bIob6x5A2e/czau/OzKE7cjVUcwtP3Qpr1xWhrluDl4kP5gWVl0VaOfuM4/ n+pzRQPx8VyaxWj27KF6edGAsg5ESgBynz7en7/7boq38oXiYtp260alyZKSyK2on5suuYS26ekk Eo4e1azzgJafiwVB47hautT/8KmngDvuaPz4SF1c1UTY0mUgR6uOImd3TkDHLt62GM+MegZTB02l +IYWLZwnl0BQ1quYGOCXX+jqMzOTfPjDh2uvW7q0aZ9jJdLTGy6bNjNSksulVy/j2rB5s7aiLBD2 7CELa3IyXWkfPBi57mtXuncHJkxomAncitjtZCnWY7PRysOOHSn4XVn0Dh8ml6AnVH4oPfHxwKpV zvPeBRfQNi6Ont+yBTj7bO35Tz6hG9M4etFVXEyrRWfOBMaNAyZPbvx4fULa3Fy6gD9+HOjUKfKL 13uBRZeBvLn2Tby17i30yvD/BJkQm4DR3UbTg/btgbFjgYULm9igN2krBL3XySfTpLl7d3TUvnNH Wpq1ToA//QScc45xZTdUsK2+yLC/dO4MTJ1K4zEvD+jbN7rcQe7Kr1iRJ5+k32/CBODjj2mfqizQ vTtVtFAB7WedRWLdE64rOsePBz79lO5fe23D11dX00l+/Xrgmmua9j2iFX3KiNmzyVXsz8WUfrHC gAHATTcBH3wAPPoo8PjjQW2qlWDRZSC5Rbl4+OyHMan/pKa/2YoVJI46dw7seLsd+Ogjul9dTXFM V14JrFxJ96PVVOx6AszNpfIW559vXJu8ceiQf6//9lvgwgubXqR8504qG7VmDa1qnTePTna+xOro KSqirVo1lZtLhdSjCXflV6zI+vW0ve02TXQplIVLJTTdt8/5+bIyEmxnnUWPbTYaS2p8v/66Jrrc xWzV1JDoWrkyeuIBg01qKnk//vEP4MsvaV8gq4gTEuicoubRdeuC10YLwjFdBpJbmOt/aR5P2Gzu r/h8ZeVKYMcOsijU1JClIilJi32I1iXWrqLrzjs1F4YZ0Qe+NobNBlx0kX/HeOLUU2kl68yZ9Pju u2m1mb8sWUJbVf9t1y7nTOLRQKRYutR3SEoC3ngDGDJEe04JpfJymnNGj3Y+9m9/c3YL2myUYf6N N4C//925Fqer6Pr2W7KSZmbS464B5imMdlJTSRTfcYeWosOfEBa1AKm6mrYqzUSUlwZi0RVmbFU2 PPDtA7h78d0oOFKA3m16B+/NmyKM1LHJyfQnqagglyKLLmerg2t+mro64JVXmvYZBQXAF1807T0U //kPbWtqGn+tyqETjKBtd+5EbzE6nrDZaFXa5s0UexMtxa71RIroUjRvDtx+O5UC0u8D6P/00EPA zz9TzJBCfX+1iMVmowzzt99OIkBvmU12SYtz4YWUI0rNWWzpCgx3ISX+WMRdV30rK7YSYVEKi64w k7M7Bz/u+hG92/TGh1d+iPhm8cF788ayBHujspLit8aOpT9FZSWLLsDZpQFoFhi1PXCAlqk3ZYn/ nXcCV10V+PF6VqygrS8JKZVLJxTJK4HAciHZbJRVfO9eLaA82laaRYroUv8RVf/w5JMprcMLLzhb Pzp0oEB6lfMP0P5P6oLH3TjYsoW2nkT5I48A33zTdNd5tKL6LSUF+OEHbW7xFb3oSknRFmqFar6x CCy6Qsxv+3/DmA/HnLjNXDYTF3W/CPecfg+u7H1lcD9syRItLstfKiroCjElRbN0JSVRIDkQvaIr Kwv48EOagB59VMt8vWgRbdUy9kAzL9fXa2VLmoqU9Lu1bQvceisFK3sLqFcndtdJcOlScu9444kn yDrhjUCEgxJd+sfRKLoWLKAYTSujgrDVCsaYGODmm4Ebb6Qx9+qrVCfRXToQNSaVpau0tOE46NmT tqmp7j+/Vy9gzJgmfQUGwNVXAyNH0gIdf9D/XiedROk7AFoUYdRCHxPAgfQhZtGWRchMycT1fa8/ sW9IuyFejvATdTWpuOMO4IYb/H8fZdlSQY9s6SL0roknnyQReuONFCR8xRXaqip9uQx/UFf0wcje fOQI/WatW2tuxgMHaHWrOzyJrr/+FfjtN2DGDM+f9dhjQE5Ow+S4r7wC3Hef8/v7g83mnNspGkWX utBZtSrwhTFmwGYDli+nvFp6UlIojlCNExUsr08j4Cq6tmzRRJYrTbHwM95R6YgCYdo0WmXaubMW fpCdTRYwb/NShMOiK4jkFeXh6s+uRr3UcsoUHS/CR1d+hDHdQ3TF5ZpDSrl05s+n4Hh9HIU3VAyX El0c00W4xoMMGgQMHkyLDgBylQDApEnkDnPNS9QYSrQFwwVSWEjBw/pJMi9Pm9yysyn/mrIkeRJd vqJiNPTCf/Bg2g4fTpbXYcMaz0qup6TEuc83bPB/BaTVUb+fO/fsrFkkMh5+OLxt8pcrriB30sCB DZ9LSqLV0gplqdJ/X1fRtXEj5YdyBwfKh47s7MCPjYujnFx9+pCl6+BBmg+qqsirsn495WvLy/M9 QW4EwKIriOTszsGQ9kPw+AgtB0mMiEGX9C6h+1CbjQZ2fj5NxsqPPns2xez4I7qSkij+Qlm6ePUi TQaDBlE9t3PPpYD3hQup36Wk/cOHk6tt69bGM3C7UlhIE09T8lopjhwhK5c6iV1yifMigMJCClAP luhSubP0MW+ZmfRddu8Gevcmd6yUvovKP/+k44qK6L1efNHZ3RgN9O5NK5HdWQqffZbccWYXXSpn oDsrlBBktdqzB/jsM9r3738Db72lvaa8nMax3r3oTnyXlzcMpGfMxbp15FouLydhXVtLc+rPP9P/ PDfX3CvCgwyLrgA5Y/4ZWL2v4RX8e+PeQ/dW3cPXELW6S0086elkLdi3j0TT9ddTGZ/ff6fJLi+P lvcDdDV6+DBZxPTuxUceoedjYjimC9BOHOPHU3+kp1OSvxtuoH4ZP54mkI0b/Rdd+/ZR7JW3xJC+ olxxKl6iXbuGgkpviTt0iF6vXwRQXEyuRcCzWFICMcYREvrSS9pzmZk07nr0oDF5/Dh9jv5KVkrq pzVrnE+YNhuNx+66/0/3MP6XzET79p7ds1YSoZ7E9oABzvFcbdpoObsAGrcZGZro8lRDkQWX+VEW TP2ChwEDKFYWAP74I6pEFwfSB8iWw1twaMYhyMek021iv4nhbYg+5mXVKrqvch0NHkzumTVrNAuY PgnhmjWUwRwgH7sSXXpiY2myi2bRpVD1xpSF55NPgH79gHvuoRWMKpeNP+TlAaef3nRLV3W1JqJU cH9KCrmfDx7UTl5qHNTVkVC89loSi4offqBVZCruxh0bN5IL7MABGk+FhRS4D2gnwWbNgNNOo/uu Kzv37SORqf9cgMbqaaeRmFOCzlOQdKTjbgWjckUHkoojUKqq3Bd8r6+nMVtUFFgiV5XwVs1dzZtr /4H6enJN+iK6GGvSoYO26OvgQXI3R0kqCRZdAVBdW43ymnK0SmpldFOcRVfnzmQpmDiRfObl5e6t EQolpA4fBl5+mdxcqsbdRJ14vOyy8E70ZmPyZK1QLqD10XvvkWACyMLjWqrEF/LzKWlkU0VXz57U zvR0YMoUEogpKZQJvF07SjIKaELq3XfpZDluHFkcAHIJTpoEXHopxVV5+j75+eRSLSqiMbN2LcVq uLp/VBoMV/HQqRNtc3Od92/Y4Jx9PjXVc/B0pONOdP31r7QNRjJbX8nMpIsKV+bMIYHdtavnFYJ9 +3p+3/POo3ghNWb0omvBArooaNuWRVekogT1VVfRPHPFFe7j/yIQdi8C2FqyFTuP7PT59SUVJWib 3BYxwkfNWlVFwsbd0uimohdd7dpRJuZLLgGeeQa47jo6sd57r1Z6QT+RFxfTqrmFC8kyMXEiCTHX 5byuJTyijUmT6Kbo1YssWy+/DNx1F+3LyvLfRbhlC7l9n36arAkHD9LJR7l0/WHPHtqmp2tteu45 rRTL/Pm0/fJLyvS9Zg3FS7Vtq42JQ4fI0vTAA1rKgsRETSQBdMLPzSX34Lff0onzzz8pRkNZ2BTT pwPff+/ZTeYqunJzKTGqQi0xj0bcia4//qCFG+H8P5aVaWNIj/rtUlPJHV1c7OxCTkwEfv3V8/sO HuxsGU5KIvdiRQWN0TlzaFxVVZEAq66O3lJkkYj6b992G6WnWbeuabkOLQSLLgATFkxAUlwSkuN8 jw/wy4349NOUbiAUuUlcl9SfcQbFGrVtSwO7tJSuOJ9+Wns9QPulJGH26KN0smcXou+oFYHqSr1T J8os7w+qeGx2Nl35tWtHZXmUezgQlOUNcF5V+PzztP3oIwq2z82leD99QW/9WOrUierblZRQzJ/i +uuBxYuBuXNJ3PfoQfc7dnTfHlfxoLLfjx7dUHRt3kxWOsa96Nq2jRZzPPdceNvibt5SizamT6f4 xjfeoHkEoDETF+efSGrRguare++lMfrVV7RCuKqKxkxyMic5jSQmTKCtN4t6hBJ00SWEGANgLoBm AP4ppfy/YH9GMLHX2ZF/KB+HZhxCcrwfQZm7dtGk0FhdOCkpVw1AJy99PbFgsGCBc92yli0pQPHo Ubr6TE0lgaASLaqJfMMGikf6y19osoy2+nZNRRV+VbmF+vWj+CxfV+rpy/S0aUPHL1tGbpTaWsrc PWwYLXooKyNBohdUnhg7Vru/04P19uOPyarQrx/FUrgTXf360YIKFfs1fDiN48WL6fmsLODrrzUx 37q1+89yFQ82G4nMBQvouZwcLeliYWHTlqhHEq79JiU9PvVUGjsvvURWgmAGkhcUUDyV61ywezdZ 0CdPpvEuJc0fmzZpCyc2baJjf/yR4gL79fNPJLVuTUJOXXD070/3q6rYtRiJ9OtHt+JistKr1Efq vBTBBDWmSwjRDMBrAMYA6APgeiFEEIsLBp8tJVvQKa2Tf4ILAIYOpaXdjbF/v2YpUMkA3bBcCTN/ KC+nE6K7Onsq14+UdLK+7z4KmlYZ1bdtIzeZmrRNGsQYUL+Eg3Hj6ESkyMigPlexU42Rn0/9/+qr tFhh2jQSHG3bkqn9ttvIxQKQlXToUKfDnfpFWSJef935Mx5+mFJcLFtGBahzcoCnnqIxcO+9ZOVK SyOBrk7qSnT16kWCrL5eS1553nm0nTJF23f77WTp8ET79s4WQPUZqan0meeeq30HlWcsQEw7VgLB nYUwIYFSujz9NLm29RZIL/jcL+ed57xaVFlKr7qKKhCsWUOPjxyhcaF+K2WtWLOGLgCfecb/Vacq 9jQ2lpLytm9P/4V9++jzQpAgN6LGSxAJa7+0bq0JrtGjaa6LcIIdSH86gO1Syl1SSjuATwGMbeSY wCkvB95/P6BDy6rLMGPpDDz0w0Pon9WfJv0nn6R8Mb5gszkn+POEcqFMmkQxPB4KEQc00JVZVgkp PTExdAV67BhZUl5+mQKkVUJLV6uCSYsKm3ZiTE4Gpk513te/P1mHXH/jr79umLE+N5fiWlSQ8sUX k3hZs4ayvQ8ZQpaladOofhzgNN6c+uXYMbIEqFguRZcuFKA6ahTw2mtkZb30UnpOTW5xceRWvu8+ +nwVT+ZqcdIH+s+fr7lXW7emDP2e6N+frHbqeHcZ5t96ixKoVlY2yaJh2rESCK6F1vX9dscdZB1U /+VG8Llf1Kpc9bmHDtHcMW8eub3VXOY6d2RlUfzWE09o+wJddTpxIrlPhaCxk5tLnxeCotURNV6C SFj7RY25q6+mC1DXkIMIJNiiqz0A/dlln2NfaPjPf0jMBBArtXL3Snyz/Ruc1+U8zDprFgV1Pvqo 70rbV9O5GkRC0EoftVIsGBQV0ZXvU0+5f941n4/ef66STwIUoPvVV8FrV7Ty2GNkeczLc95/2WXA zJnO+3JznVfqAeROnD6dcta8/TadxDp1Am65hU5iqsCvK/6clPr2pQB4fb6ut9+mUi3jxmmpH9TY UMH2Kig6P9+3z1GMHElbdbxePOTlUbLPBx+kJJn6FaLRTnY2xUZ5EquhiIVR88WPP9K2qEgbV0oA AQ3H26BBNL5HjaLx8tprlJzZX1asoIz7ihCLLsYkLFxIVv0ePei3dq2yEmEIGcTgbiHEVQDGSCmn Oh7fCGColPJe3Wvk0JeeD8rnJdXWIaWmFoebJ8DfbyFFHWJkAmLr6Mq6Wb0dEALJdhvK4htPj5Be TVeZtgTv7pDmtWWIr6tEYfNuiKuvRmLdcdhjGpb32P3dl+h8oX9Gwbj6atTEJGFb+mC3z3cry0VG 5V78lnkZACCptgx9Sn/GsfjWaG4/ij2pfVGaYO4YmvIv5yFl7F2Nv9AkdCvLRVJtGexAax/HAAAG nElEQVQx2qKE9Ooi2GMScDxOO2km223YkTYAZfG+lbg56ehaJNZVnBg7+vFCYxfY1HJ40L5HjKzD 4OIlWNfmQnQsz0eK3YYYWYcNGaP8fq/Ox/5Ai5oS1DRLQlx9FaqapWBHmrY8fMChpQAkdqYNxFEf +8MdVhsrjXFKSQ7qYmJRL2LpNwawqRX9xlkVO9G2YheqYhu3DPo6t6TUlOJYfCsk1lWgullzxNbX oC4mFlvSh6GFvRTdbb/jeFxLxNVXo6pZstNvGBokBh76DvaYRByNb4M9LYJQn1RHpI2XYGFkv/Qp /QlSxKBOxKLrsRi8P3uyIe1wRQgBKWVQVnIEW3QNAzBbSjnG8XgWgHp9ML0QInrLizMMwzAMYznM KrpiAWwBMArAAQC/AbheShlEnxrDMAzDMIz1CGrKCCllrRDiHgDfgVJGzGfBxTAMwzAME2RLF8Mw DMMwDOOesNZeFEKMEUJsFkJsE0LMbPyIyEAI0VEI8aMQ4k8hxB9CiPsc+1sJIb4XQmwVQiwVQqTr jpnl6KfNQoiILsEuhGgmhFgvhPjK8Tjq+0UIkS6E+FwIsUkIkS+EGMr9cuJ7/imE2CiE+FgIkRBt /SKEeFsIUSSE2Kjb53cfCCEGOfpxmxDi5XB/j2DjoV/+5vgPbRBCfCGESNM9F7X9ontuuhCiXgjR SrcvqvtFCHGvY8z8IYTQx6MHp1+klGG5gdyN2wF0ARAHIBdA73B9vpE3AFkA+jvup4Di3noDeA7A /zr2zwTwrON+H0f/xDn6azuAGKO/Rwj75y8APgKwyPE46vsFwHsApjjuxwJIi/Z+cXy3nQASHI// BWBStPULgLMBDACwUbfPnz5QHo7fAJzuuL8EtPLc8O8X5H45X/3mAJ7lfnHa3xHAtwAKALTifpEA cB6A7wHEOR63CXa/hNPSFd7EqSZCSlkopcx13C8HsAmUv+xy0MkVju04x/2xAD6RUtqllLtAP7AP NWCshxCiA4CLAfwTgFodEtX94rgaP1tK+TZAsZJSyqOI8n4BUAbADqC5Y9FOc9CCnajqFynlSgBH XHb70wdDhRDZAFpIKX9zvO593TGWxF2/SCm/l1LWOx7+CqCD435U94uDFwH8r8u+aO+XOwE849Ao kFIecuwPWr+EU3SFN3GqSRFCdAGp618BZEopVVrpIgAq6Vc7UP8oIrmvXgIwA0C9bl+090tXAIeE EO8IIdYJId4SQiQjyvtFSlkK4AUAe0Biyyal/B5R3i8O/O0D1/37Ebl9o5gCskQAUd4vQoixAPZJ KV0yOUd3vwDoAeAcIcRqIcRyIYRKghm0fgmn6Ir6iH0hRAqABQDul1Ie0z8nyTbprY8irv+EEJcC KJZSrodm5XIiGvsF5E4cCGCelHIggOMAHtS/IBr7RQhxEoAHQOb9dgBSBCVgPkE09osrPvRB1CGE eBhAjZTyY6PbYjRCiOYAHgLwmH63Qc0xG7EAWkoph4GMAZ8F+wPCKbr2g3zIio5wVogRjRAiDiS4 PpBSLnTsLhJCZDmezwZQ7Njv2lcdHPsijTMBXC6EKADwCYCRQogPwP2yD3QV+rvj8ecgEVYY5f0y GMAqKWWJlLIWwBcAzgD3C+Dff2afY38Hl/0R2TdCiJtBIQw36HZHc7+cBLpw2eCYezsAWCuEyER0 9wtA3/ULAHDMv/VCiAwEsV/CKbrWAOghhOgihIgHcB2ARWH8fMMQQggA8wHkSynn6p5aBAoEhmO7 ULd/vBAiXgjRFWTy/A0RhpTyISllRyllVwDjAfxXSnkTuF8KAewVQvR07BoN4E8AXyGK+wXAZgDD hBBJjv/UaAD54H4B/PzPOMZYmaBVsQLATbpjIgYhxBiQxWKslLJK91TU9ouUcqOUMlNK2dUx9+4D MNDhno7afnGwEMBIAHDMv/FSysMIZr+EebXARaCVe9sBzArnZxt5A3AWKGYpF8B6x20MgFYAlgHY CmApgHTdMQ85+mkzgAuN/g5h6KNzoa1ejPp+AdAPwO8ANoCuvNK4XyRAgb9/AtgIChiPi7Z+AVmF DwCoAcXJTg6kDwAMcvTjdgCvGP29QtAvUwBsA7BbN+/Oi+J+qVbjxeX5nXCsXoz2fnHMJx84vuda ACOC3S+cHJVhGIZhGCYMhDU5KsMwDMMwTLTCoothGIZhGCYMsOhiGIZhGIYJAyy6GIZhGIZhwgCL LoZhGIZhmDDAoothGIZhGCYMsOhiGIZhGIYJAyy6GIZhGIZhwsD/A3nQgUlio7uIAAAAAElFTkSu QmCC )