Skip to content

Latest commit

 

History

History
283 lines (245 loc) · 14.4 KB

042.md

File metadata and controls

283 lines (245 loc) · 14.4 KB

向量化函数

自定义的 sinc 函数:

In [1]:

import numpy as np

def sinc(x):
    if x == 0.0:
        return 1.0
    else:
        w = np.pi * x
        return np.sin(w) / w

作用于单个数值:

In [2]:

sinc(0.0)

Out[2]:

1.0

In [3]:

sinc(3.0)

Out[3]:

3.8981718325193755e-17

但这个函数不能作用于数组:

In [4]:

x = np.array([1,2,3])
sinc(x)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-4-9d4f36f2aa7a> in <module>()
 1 x = np.array([1,2,3])
----> 2  sinc(x)

<ipython-input-1-dffe464e3332> in sinc(x)
 2 
 3 def sinc(x):
----> 4  if x == 0.0:
 5         return 1.0
 6     else:

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

可以使用 numpyvectorize 将函数 sinc 向量化,产生一个新的函数:

In [5]:

vsinc = np.vectorize(sinc)
vsinc(x)

Out[5]:

array([  3.89817183e-17,  -3.89817183e-17,   3.89817183e-17])

其作用是为 x 中的每一个值调用 sinc 函数:

In [6]:

import matplotlib.pyplot as plt
%matplotlib inline

x = np.linspace(-5,5,101)
plt.plot(x, vsinc(x))

Out[6]:

[<matplotlib.lines.Line2D at 0xa24e4e0>]

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVNWZx/HvK4iKG6IRVEBEoQUUFwxxSUy5hnHNTBId R4lxmRAUNY4muGS0jUviGowatxFikploXJJRx11pExU3VmVHUEBBkcWIYlj6nT9OtbZt7/fWvbdu /T7Pw2NV16lz3rK73jp1tmvujoiI5NcGaQcgIiKlpUQvIpJzSvQiIjmnRC8iknNK9CIiOadELyKS c5ETvZmNMbP3zOz1Jh4/0cymmNlUM3vBzAZFbVNERFovjh79WGBoM4/PAw5090HA5cAdMbQpIiKt FDnRu/vfgBXNPD7e3T8s3n0Z6BG1TRERab2kx+hPAx5NuE0RkYrWMamGzOwg4FTggKTaFBGRhBJ9 cQL2TmCouzc6zGNmOnRHRKQd3N2ae7zkQzdm1gt4EDjJ3ec2V9bdc/vv0ksvTT0GvTa9Pr2+/P1r jcg9ejP7I/BNYBszWwhcCmxYTNy3A5cAWwG3mhnAWncfErVdERFpnciJ3t1PaOHx04HTo7YjIiLt o52xCSkUCmmHUDJ5fm2g11fu8v76WsNaO8ZTambmWYlFRKRcmBme9mSsiIikS4leRCTnlOhFRHJO iV5EJOeU6EVEck6JXkQk55ToRURyToleRCTnlOhFRHJOiV5EJOeU6EVEck6JXkQk55ToRURyTole RCTnlOhFRHJOiV5EJOeU6EVEci5yojezMWb2npm93kyZX5vZHDObYmZ7RW1TRERaL44e/VhgaFMP mtkRwC7u3hf4IXBrDG2KiEgrRU707v43YEUzRY4B7i6WfRnoYmbdorYrIiKtk8QY/Q7Awnr3FwE9 EmhXRERIbjK24RXKPaF2Rdpt3To47zzo3x+mT087GpH265hAG+8APevd71H82ZdUV1d/drtQKFAo FEoZl0iTVqyA448Pt88+GwoFGDMGjjoq1bBEqKmpoaampk3PMffonWsz6w087O67N/LYEcBIdz/C zPYFRrv7vo2U8zhiEYnqo49g8OCQ1K+5Bjp2hJdegu98J9w/8cS0IxT5nJnh7g1HTb5YJmpyNbM/ At8EtgHeAy4FNgRw99uLZW4mrMz5GDjF3Sc2Uo8SvWTCbbfBE0/An//8xZ8//zyceirMnAkbaAeK ZEQiiT4uSvSSBe4waBCMHg2HHPLlx/bcE667Dg47LJ34RBpqTaJXv0Sknuefh7Vr4eCDv/yYGZxx BvzmN8nHJRKFevQi9ZxwAuy3X5iAbcyqVbDjjjB5MvTs2XgZkSRp6EakDZYsCUsp58+HLl2aLnf2 2bDllnD55cnFJtIUJXqRNrjiCliwAO64o/lyM2aEoZ2334ZOnZKJTaQpGqMXaSX3sE5++PCWy/bv D1VV8OijpY9LJA5K9CKE4ZrVq2HvvVtX/sgj4emnSxuTSFyU6EWAZ54JwzHW7Bfgzx18cHiOSDlQ ohcBnn32y+vmm7PnnvDee/Duu6WLSSQuSvRS8dxDom9s7XxTOnQI5988+2zJwhKJjRK9VLxp02Cz zaB377Y975BDlOilPCjRS8Vra2++Tt04vVYFS9Yp0UvFq5uIbatddw3HJcybF39MInFSopeKtm4d PPdc+xK9WXiehm8k65TopaJNnAg9ekC3dl7FWMsspRwo0UtFa+uyyobqJmQ1Ti9ZpkQvFe1vf4MD D2z/83fcETp3htmz44tJJG5K9FLRJk6EffaJVsfgwaEekaxSopeKtXhxWDXTq1e0egYPhgkT4olJ pBSU6KViTZgQDjFr7fk2Tdl7b/XoJdsiJ3ozG2pmM81sjpmNauTxbczscTObbGZvmNkPorYpEoeJ E0NvPKq6RK8JWcmqSInezDoANwNDgQHACWbWv0GxkcAkd98TKADXm1nHKO2KxKGuRx/VttvC5ptr 45RkV9Qe/RBgrru/5e5rgXuAYxuUWQxsUby9BbDM3ddFbFcksokT40n0oAlZybaoiX4HYGG9+4uK P6vvTmCgmb0LTAHOidimSGTvvw8ffQR9+sRT3957a0JWsivqEEprRiUvAia7e8HMdgaeMrM93P2j hgWrq6s/u10oFCgUChHDE2lcXW8+6kRsncGD4cYb46lLpDk1NTXU1NS06TmRLg5uZvsC1e4+tHj/ QqDW3a+uV+ZR4Ep3f6F4/xlglLu/1qAuXRxcEnPVVbBiBVx7bTz1LV4Mu+0GH3wQ34eHSGskcXHw 14C+ZtbbzDoBxwMPNSgzEzi0GFA3oArQtJWkKq6J2DrbbQcbbQQLFsRXp0hcIiX64qTqSOAJYDpw r7vPMLPhZja8WOwqYB8zmwI8DfzU3ZdHaVckqjgnYutonF6yKtLQTZw0dCNJWb48XE1q5UrYIMYt g5deCuvXwxVXxFenSEuSGLoRKTsTJ4aLe8eZ5EE9eskuJXqpOJMmwV57xV/v3nuHukWyRoleKs60 aWGFTNx69IDVq2HZsvjrFolCiV4qzvTpMHBg/PWawYABoX6RLFGil4pSWwszZoSEXAoDBoRvDCJZ okQvFWXhQthiC+jSpTT1DxyoHr1kjxK9VJRp00ozbFNHPXrJIiV6qSjTppVu2AbUo5dsUqKXilKq idg6PXrAxx+HTVkiWaFELxWl1EM3WnkjWaRELxXDvbQrbuoMHKhxeskWJXqpGAsWlHbFTR316CVr lOilYpR6IraOevSSNUr0UjFKPRFbRz16yRoleqkYpZ6IrdOzJ6xaFa5gJZIFSvRSMaZPT2boxgz6 99fwjWSHEr1UBPfkEj1o45RkixK9VIQFC2DzzWGrrZJpT0chSJYo0UtFSGL9fH0DBoQ2RbIgcqI3 s6FmNtPM5pjZqCbKFMxskpm9YWY1UdsUaatZs6CqKrn2qqpCmyJZ0DHKk82sA3AzcCjwDvCqmT3k 7jPqlekC3AJ8y90Xmdk2UdoUaY/Zs5NN9L17w3vvhStObbJJcu2KNCZqj34IMNfd33L3tcA9wLEN yvwb8IC7LwJw9w8itinSZrNmQb9+ybXXoQP06QNz5iTXpkhToib6HYCF9e4vKv6svr5AVzMbZ2av mdmwiG2KtFnSQzeg4RvJjkhDN4C3osyGwN7AIUBnYLyZveTuX+rrVFdXf3a7UChQKBQihicSjg3+ 4APo1SvZdpXopRRqamqoqalp03OiJvp3gJ717vck9OrrWwh84O6rgdVm9ldgD6DZRC8SlzlzYJdd wnBKkqqq4Nlnk21T8q9hJ/iyyy5r8TlRh25eA/qaWW8z6wQcDzzUoMz/Al83sw5m1hn4GqCtJJKY pMfn6/TrFyaBRdIWqUfv7uvMbCTwBNABuMvdZ5jZ8OLjt7v7TDN7HJgK1AJ3ursSvSQmjfF5+Hzo xj0ciyCSFnNvzTB76ZmZZyUWyZcTT4TDD4eTT06+7a23DkchdOuWfNtSGcwMd2+2K6GdsZJ7Sa+h r08TspIFSvSSa+7pjdFDaFeJXtKmRC+5tmQJbLQRdO2aTvtVVZqQlfQp0UuupTlsAxq6kWxQopdc S2vFTR0leskCJXrJtbQT/S67wNtvw9q16cUgokQvuZbmRCyE+YHtt4d589KLQUSJXnIt7TF60ISs pE+JXnJrzZpwCcGdd043Do3TS9qU6CW35s+HHj2gU6d049CZN5I2JXrJrTlzoG/ftKMIMegCJJIm JXrJrdmz052IraMevaRNiV5yKys9+p49YfnycAEUkTQo0UtuzZ6djUS/wQZhQnju3LQjkUqlRC+5 NWdONoZuIHzgaPhG0qJEL7n0ySfw/vvJXye2Kf36aUJW0qNEL7n05pvQp0/y14ltinr0kiYlesml rIzP11GPXtKkRC+5lKXxeVCPXtIVOdGb2VAzm2lmc8xsVDPlvmpm68zsX6K2KdKSrPXou3eHTz+F FSvSjkQqUaREb2YdgJuBocAA4AQz699EuauBx4FmL2IrEoes9ejNtENW0hO1Rz8EmOvub7n7WuAe 4NhGyp0F3A8sjdieSKtkrUcPGqeX9ERN9DsAC+vdX1T82WfMbAdC8r+1+COP2KZIsz78EFatCufA Z4nG6SUtHSM+vzVJezRwgbu7mRnNDN1UV1d/drtQKFAoFCKGJ5Wo7ugDy9ggYb9+8NhjaUch5a6m poaampo2Pcfc29/BNrN9gWp3H1q8fyFQ6+5X1yszj8+T+zbAJ8C/u/tDDeryKLGI1PnjH+HBB+G+ +9KO5IteegnOOgtefTXtSCRPzAx3b7ZbE7VH/xrQ18x6A+8CxwMn1C/g7n3qBTQWeLhhkheJU1ZO rWyo7hRL9+x925B8izRG7+7rgJHAE8B04F53n2Fmw81seBwBirRVVk6tbKhrV+jYEZZqSYIkLGqP Hnd/DHiswc9ub6LsKVHbE2nJ7NkwYkTaUTSurle/7bZpRyKVRDtjJVfcs3FB8KboIiSSBiV6yZWl S8P571tvnXYkjVOilzQo0Uuu1E3EZnWyU4le0qBEL7mS5WEbUKKXdCjRS67MmpXNpZV1+vYNZ+Wv X592JFJJlOglV7K6hr5O587wla/AggVpRyKVRIleciXriR40fCPJU6KX3Fi/HubNy+ZmqfqU6CVp SvSSGwsWhGGRzp3TjqR5SvSSNCV6yY2sT8TWqaoKsYokRYlecqMcxudBPXpJnhK95EbW19DX2XFH WLIEVq9OOxKpFEr0khvl0qPv2BF22imspxdJghK95Ea5JHrQ8I0kS4lecmH16jAcsuOOaUfSOv36 aUJWkqNEL7kwd24YDukY+QoLyaiqUo9ekqNEL7lQLhOxdTR0I0lSopdcKKfxeVCil2Qp0UsulMtm qTrdusGaNbBsWdqRSCWInOjNbKiZzTSzOWY2qpHHTzSzKWY21cxeMLNBUdsUaWjGDOjfP+0oWs8M dt0VZs5MOxKpBJESvZl1AG4GhgIDgBPMrOHbbR5woLsPAi4H7ojSpkhD7uWX6CHEO3162lFIJYja ox8CzHX3t9x9LXAPcGz9Au4+3t0/LN59GegRsU2RL3jnHdhkE+jaNe1I2qZ///ABJVJqURP9DsDC evcXFX/WlNOARyO2KfIF5dibByV6SU7UVcfe2oJmdhBwKnBAU2Wqq6s/u10oFCgUChFCk0pRrol+ wAAlemm7mpoaampq2vQcc291rv7yk832BardfWjx/oVArbtf3aDcIOBBYKi7z22iLo8Si1SuESNC oj/77LQjaZv162HzzWHpUth007SjkXJlZri7NVcm6tDNa0BfM+ttZp2A44GHGgTRi5DkT2oqyYtE Ua49+g4dYJdddBSClF6kRO/u64CRwBPAdOBed59hZsPNbHix2CXAVsCtZjbJzF6JFLFIA+Wa6EHj 9JKMSEM3cdLQjbTH8uXQuzd8+GFYm15uqqth3Tq44oq0I5FylcTQjUiq6nrz5ZjkQT16SYYSvZS1 ch62ASV6SYYSvZS16dPLO9H36wfz5sHatWlHInmmRC9lrdx79BtvDD17hvP0RUqlTC7TIKVWWwuv vBIu3LHllrDddrDZZmlH1bJyT/Tw+fBN1l+HOyxaBCtWhMnvqirYdtu0o5LWUKIXnnkGRo2CVavC xp0PP4S//x1uvhmOOy7t6Jr28cfw3nvhylLlrBzG6d99F37wA5g8OST3LbYI6/9HjoTzzw8bvyS7 NHRTwT79FL7zHfjhD+GnPw3JZsKEMIzw6KPws5/BySeHpJ9Fs2aFDUflcvnApmQ90f/lL7D33nDA ASHhv/EGvPhi+FuZNy/MMzz3XNpRSnOU6CvU2rWht96xY0gyxx33xSWK++wDkyaFnx19dFjrnTXl MNzRGlk+rviBB+Css+DBB+HSS7/4odq7N/z+9+Hf974HL7+cWpjSAiX6CrR+PQwbFsZc//AH6NSp 8XKbbgp33RUe//nPk42xNaZOhd13TzuK6AYODBcgydqH6fz54RyhBx+E/fdvutyhh8LYsXDMMeF3 ItmjRF+B/uM/wkFa990HG27YfNkOHUKP7b/+K4zlZ8mUKbDHHmlHEd1mm8EOO2TrGrJr1sC//itc eCF89astlz/ySLjpJhg6NFwfQLJFib7CPPoo/O//hq/kG2/cuud07x6S/fe/HyY/s2Lq1Hwkegiv I0u94YsuCpOuP/5x659z3HHwox/BKaeEVVySHUr0FWTpUjj9dLj7bujSpW3PPeQQOOEEuOSS0sTW VkuXwiefQK9eaUcSjz32CN9QsmDaNPjd7+C3v2370RIXXQQffRRWbEl2lPl6heQsXgzjx8NGG4U1 5r16wTbbpB1V67mH1TUnnQTf/Gb76rjoorB2+ic/Catd0jRlCgwaVL5n3DQ0aBDcfnvaUQSXXBJW YW29dduf27Fj+Pa3336hczBwYPzxlcqaNWFeYvHi8M21Tx/Ya6/yX9UFSvTNWrECrrkmDHMsWxb+ eGtrwx/C/Plw0EFw7rnwjW9kP+H84Q9hKdw997S/jq5dw1f5Sy+F//7v+GJrj7yMz9fJSo/+1Vfh pZfC30t77bILXHVVmPCv24SXZUuXwm23wW9+E+ZLttsuDFvNmgULFoT396hR4b9ly90z8S+Ekg3/ +If7DTe4f+Ur7v/+7+6TJ7uvX//FMqtWuf/mN+59+7ofeKD7ggXpxNoay5a5d+vm/tpr0ev66KNQ 15Qp0euKYtgw9zvvTDeGONXWum+5pfvSpenGcfjh7rfeGr2e2lr3gw5yv/HG6HWVSm2t+7XXunfp 4n7aae5vvPHlMkuXuo8Z477jju7HHus+Y0biYbaomDubz68tFUjqX1YS/YIF7kOGuH/rW43/4hta v979l78Mye/JJ0sfX3v86EfuZ5wRX32/+pX7McfEV1977LGH+yuvpBtD3L7xDfdnnkmv/XHj3Pv0 CR2dOEyf7r7NNu7vvhtPfXFascL9298O7/W33mq5/OrV7tdcE17P2LElD69NlOjbaNw49+7d3a++ Onzat/W522/vfv31pYis/V55Jbym5cvjq3P1avcePdwnToyvzrb4xz/cN9nE/ZNP0mm/VEaODN8k 03LQQe533x1vnRdc4P5v/xZvnVG9+ab7LruE/9+fftq2506b5t6vn/uIEfF9IEalRN8GY8dG75Uv XOi+887pvlnrW7fOffBg99/9Lv66f/EL91NOib/e1pgyxX3XXdNpu5TuvNP95JPTaXvq1NBRWbMm 3npXrQrDHs8+G2+97fXWW+69e7vfckv761i5MgzjHHig+4cfxhdbe7Um0Wt5JWGjxyWXQE0NHHZY ++vp0QOefRZ+/Wu45ZbYwmu3O++Ezp3DSpu4nX46/PnPYSIraXmbiK2T5oTsTTeFNfAtbaBrq003 hdGj4cwz0z9z/513wkqgc86BM85ofz1bbhl2Cw8YEOpbtiy+GEumpU+Clv4BQ4GZwBxgVBNlfl18 fAqwVxNlSvy517grrwy98Pnz46tz3jz3Xr3cf//7+Opsqw8+cN922zCRXCqnnOJ+1VWlq78p550X fm958/HHYUgq7l51S5YtCxOSS5aUpv7a2jDJm+Y33eXL3auqwnxaXGpr3X/6U/eBA9Odh6DUQzdA B2Au0BvYEJgM9G9Q5gjg0eLtrwEvNVFXyf+HNHTZZe79+5fml/TGG2HVzosvxl93a4wY4X7mmaVt Y+JE95493deuLW07DR12mPsjjyTbZlKqqtxffz3ZNq+9NqxiKqUZM8JEZqk+TJqzZo37oYe6n3NO /HXX1rpffnn4vaWV7FuT6KMO3QwB5rr7W+6+FrgHOLZBmWOAu4uZ/GWgi5l1i9huZJdfHtaUjxsX 1s3GbeDAsLPwO9+Bt9+Ov/7mTJ4c1v6X+iCyvfaCHXcMRyokKa9DN5D88M369WGY8ayzStvOrruG 8+wvuKC07TTm3HPDWv7rrou/brNwnPewYWFfzeLF8bcRh6iJfgdgYb37i4o/a6lMj4jtRnLFFfA/ /xPG07uV8CPniCPCRRmOOSZc1CMJtbXhTfvzn4cNTqV21llhTiIpS5aEUx53aPhXlhNJJ/pHHgnv gdYcXBbVf/4nPPlk2JCVlFtvDe/ze+4p7catiy8Oc2EHH5zNZB/1pXsryzXcN9ro86qrqz+7XSgU KBQK7QqqJdtsE3ry3buXpPovOPdceP11OO208MdW6h20Y8eGC4qcfnpp26nzz/8cJrdmzgy9tlJ7 9VUYPDj7O5Hba/Bg+OUvk2vvjjuiTUy2xRZbwLXXwvDh8Npr8U/8NvS3v0F1NbzwQphALbWf/Swc G1Hqv82amhpqamra9BwLQzztY2b7AtXuPrR4/0Kg1t2vrlfmNqDG3e8p3p8JfNPd32tQl0eJJcs+ /RS+/vVw7Ov555eunfffh912C72mPfcsXTsNjRoVztK55prSt3XRRSFBXHZZ6dtKw8qV4WLhK1aU /uiAd94J5/kvWhRWZyXBPRxlfMgh4TydUnn33fAt5a67Qnt5Zma4e7MfL1GHbl4D+ppZbzPrBBwP PNSgzEPA94sB7QusbJjk827jjcNyrOuvL+2Z7ueeGy79l2SSBzj11HDaYRLL5158sfmLYJS7Ll3C gXlJHFn829+Go4WTSvIQeru33ho6BfPmlaaNNWvgu98N31TynuRbK1Kid/d1wEjgCWA6cK+7zzCz 4WY2vFjmUWCemc0FbgcS+qKYLb16hXmBE08szR/4E0+EJFhv9CsxVVXQty/83/+Vtp1168J1Sr/2 tdK2k7b99w8npZZSbS2MGRM+pJPWp084AXXEiNDDj5N7uGB5t27hoilS1NKynKT+kYEjEJJw003u AwbEu6Nu2bKw+/Cxx+Krs63GjnU/+ujStjFhQvh/l3d33eV+4omlbWPcOPfddmv7UR9xWbMmnFd0 xx3x1jt6tPvuu7v//e/x1ptlaGds9px5Jhx4YLiIx/r10etzD1f0+Zd/Sfdr6ve+B88/X9oVBy++ GI6Kzrv99guvtZTuuissEEhrUnvDDcPihIsuim+Y6rHHwkT2ww/D5pvHU2deKNEnzCwsR/z003Dt 1qhfXUePDksOk1yp0ZhNNw3jonffXbo2xo/P9/h8naqqMClbqss2rlwZkmEpjsZoi113hRtuCJ2E jz6KVtfUqWF+6v77w94O+SIl+hRsuGH4g/zrX0OPpr3J/qWX4Be/CD2jTp3ijbE9TjstjPuWavHU +PGV0aPfYIMwD1Gqcfp77glnOmXhCmnDhoUVaT/6Ufv/bqZNg299K1y+8IAD4o0vL5ToU7LVVvDU U2EC89JL2/78CRPg2GNDYt1pp/jja48hQ8KH2PPPx1/3kiWhJ1pVFX/dWVTKCdm6YZusuOkmmD07 7Mdoa7KfOTN8aF13XVhBJI1Tok/RNtvA00+H4wp+/OOwLKw1Xn4Z/umfwjVGjzqqtDG2hVlYxTFm TPx1jx8P++4beruVoFTj9FOnhnmUKKe0xq1z59DpeeWVsCSytrZ1z3v+eTj00PCt9sQTSxtjuauQ t012bbttGMKZPz/04ubMabqsO9x3Hxx9dNgB++1vJxdna510Uji+OOqYa0OVMmxTZ8gQmDSp9R/+ rTV2bDhzpkOHeOuNqkuXsNHv9dfDcE5zx1+vWxc2zH33u+FaryefnFyc5UqJPgO23hr+8pewemb/ /cMk7SuvfP41dv36sJ37gAPCRZcffBCOPDLdmJvSrVs43OlPf4q33kpL9FtsEdabx3nuzZo14aLu p5wSX51x2mILePzx8H7o3z/8rf/9758//sEH4VvsfvuF98PEidn6RptlSvQZYRaWXr70UlgaNmxY uJBJ9+5hZ+2pp4YJqwkTwuRVlp16ahgHjssnn4QTOYcMia/OcnDAAeHbXlweeiicqrrzzvHVGbfN Ngur0saPD99ounUL74dddglxjxsXDhB78knYfvu0oy0fkc66iVOez7ppD/ewg7ZzZ/jKV0p/7kmc 1q0L57U8+2zomUX18MPh+Ig2nuNU9h56CH71q5Dc4nDEEWH/xrBh8dSXBPcwDLhkSTixdNNN044o e1pz1o0SvZTEqFEh4V9/ffS6fvjDsNrmvPOi11VOPvkkfKN7++2wSiuKBQvCGUhJHmAmyUjiUDOR Rg0fHjZPffJJtHpqa8OZ6UcfHU9c5aRz57CL+vHHo9d1222hJ68kX5mU6KUk+vQJk2Z//GO0eiZO DGO0/frFE1e5OfroMHQVxaefhjmTpM6dl+xRopeSGTky7FaMMiL38MOV2Zuvc9RRoUcf5Qjo++4L V66qlM1m8mVK9FIyhx0GH38cbYdnpSf6HXYIO59feKH9ddxyS/jQlcqlRC8ls8EGYcnozTe37/mL FoWJyEo/v+SYY9o/fPPqq2HFSlb3XUgylOilpE4+OQw9tOf44kceCUc9lNPS0lKIMk5/yy1hbD5r O2ElWUr0UlJduoRzSK69tu3P/fOfK3vYps5ee4XVS9Omte158+aFD4gsHWAm6dA6eim5xYvDRcsn TQqXVGyNN94IY/zz5sEmm5Q2vnJw2WVhLXxbdhwPGxZ2lLbndFQpH9owJZlx8cVhrLi1ieqkk2D3 3cPGK4Hly8N1eSdPDruOWzJ1Khx+eDgkT1dbyreSJ3oz6wrcC+wIvAUc5+4rG5TpCfwO2BZw4A53 /3UjdSnR59jKlWEt/HPPtXwswrx54VybefPCQVcSnH9+2G08enTLZY8+Gg45JBx/LfmWRKK/BvjA 3a8xs1HAVu5+QYMy3YHu7j7ZzDYDJgDfdvcZDcop0efctdeGQ9seeKD5ciNGQNeucOWVycRVLt59 NwyBzZoVzj9qyvPPh3mRWbPCgXiSb0kcgXAMUHeV0LuBL52Q7u5L3H1y8fYqYAagc+cq0MiRYadr c7tlFy+Ge+8NVxuSL9p++3B91V9/6fvw51auDGcDXXmlkrx8LmqPfoW7b1W8bcDyuvtNlO8NPAcM LCb9+o+pR18Bpk4NVwW6//5wjkt9a9eGnuh228GNN6YTX9a9+WYY1nr66bAap741a2Do0DC3of9/ laM1PfrCT96EAAAF3ElEQVQWVyib2VNA90Yeurj+HXd3M2syUxeHbe4HzmmY5OtUV1d/drtQKFAo FFoKT8rMoEHh4hff+144a71uW/7HH4drfpqFS8NJ43beGe64I1wM+957w0VeIBwzcfrpsOWWcMMN 6cYopVVTU0NNG8/sjtqjnwkU3H2JmW0HjHP3XRsptyHwCPCYuzc6laQefWUZMwZ+8pPQq99nn7A5 qqoK7rwzXGBcmjduHBx/fNh5vHhxmPvYaKPwc51QWVmSmoxd5u5Xm9kFQJdGJmONMH6/zN3PbaYu JfoKM39+uGTihAlhcvH880OPXlpn8mS49dZw1ah99oHBg0Oyl8qS1PLKPwG9qLe80sy2B+509yPN 7OvAX4GphOWVABe6++MN6lKiFxFpI22YEhHJOV1hSkRElOhFRPJOiV5EJOeU6EVEck6JXkQk55To RURyToleRCTnlOhFRHJOiV5EJOeU6EVEck6JXkQk55ToRURyToleRCTnlOhFRHJOiV5EJOeU6EVE ck6JXkQk55ToRURyrt2J3sy6mtlTZjbbzJ40sy7NlO1gZpPM7OH2ticiIu0TpUd/AfCUu/cDnine b8o5wHQ+vzh4xampqUk7hJLJ82sDvb5yl/fX1xpREv0xwN3F23cD326skJn1AI4A/gto9gK2eZbn P7Y8vzbQ6yt3eX99rREl0Xdz9/eKt98DujVR7lfAT4DaCG2JiEg7dWzuQTN7CujeyEMX17/j7m5m XxqWMbOjgPfdfZKZFaIEKiIi7WPu7Rs2N7OZQMHdl5jZdsA4d9+1QZmrgGHAOmBjYAvgAXf/fiP1 Vez4vYhIFO7e7LB4lER/DbDM3a82swuALu7e5ISsmX0TON/dj25XgyIi0i5Rxuh/CRxmZrOBg4v3 MbPtzez/mniOeu0iIglrd49eRETKQ6Z2xprZWWY2w8zeMLOr046nFMzsPDOrNbOuaccSJzO7tvi7 m2JmD5rZlmnHFAczG2pmM81sjpmNSjueOJlZTzMbZ2bTiu+5s9OOKW553qxpZl3M7P7i+266me3b VNnMJHozO4iwNn+Qu+8GXJdySLEzs57AYcDbacdSAk8CA919D2A2cGHK8URmZh2Am4GhwADgBDPr n25UsVoLnOvuA4F9gTNz9vog35s1bwQedff+wCBgRlMFM5PogRHAL9x9LYC7L005nlK4Afhp2kGU grs/5e51eyVeBnqkGU9MhgBz3f2t4t/lPcCxKccUG3df4u6Ti7dXERLF9ulGFZ88b9YsfmP+hruP AXD3de7+YVPls5To+wIHmtlLZlZjZvukHVCczOxYYJG7T007lgScCjyadhAx2AFYWO/+ouLPcsfM egN7ET6k8yLPmzV3Apaa2Vgzm2hmd5pZ56YKN7thKm4tbMDqCGzl7vua2VeBPwF9kowvqhZe34XA 4fWLJxJUjJp5fRe5+8PFMhcDa9z9fxINrjTy+HX/S8xsM+B+4Jxiz77sVcBmzY7A3sBId3/VzEYT zhu7pKnCiXH3w5p6zMxGAA8Wy71anLDc2t2XJRZgRE29PjPbjfAJPMXMIAxrTDCzIe7+foIhRtLc 7w/AzH5A+Kp8SCIBld47QM9693sSevW5YWYbAg8Af3D3v6QdT4z2B44xsyMobtY0s981tlmzTC0i jBC8Wrx/P80cLJmloZu/ENbjY2b9gE7llOSb4+5vuHs3d9/J3Xci/JL2Lqck3xIzG0r4mnysu3+a djwxeQ3oa2a9zawTcDzwUMoxxcZCr+MuYLq7j047nji5+0Xu3rP4fvtX4NkcJXncfQmwsJgrAQ4F pjVVPtEefQvGAGPM7HVgDZCbX0oj8jgkcBPQCXiq+K1lvLufkW5I0bj7OjMbCTwBdADucvcmVzaU oQOAk4CpZjap+LML3f3xFGMqlTy+584C/rvYCXkTOKWpgtowJSKSc1kauhERkRJQohcRyTklehGR nFOiFxHJOSV6EZGcU6IXEck5JXoRkZxTohcRybn/B44x+J9qVCmGAAAAAElFTkSuQmCC )

因为这样的用法涉及大量的函数调用,因此,向量化函数的效率并不高。