Skip to content
forked from Giskard-AI/giskard

Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. βš‘οΈπŸ§‘β€πŸ”§

License

Notifications You must be signed in to change notification settings

ManeSah/giskard

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

giskardlogo

Open-Source CI/CD platform for ML teams

Giskard creates interfaces for humans to inspect AI models

GitHub release GitHub build Giskard on Discord


About Giskard

Giskard creates interfaces for humans to inspect AI models. It is open-source & self-hosted.

⚑ Explore and Validate - Collaborate with business stakeholders with direct feedback & discussion.
πŸ§‘β€πŸ”§ Test - Exhaustive test suites, backed by State-of-the-Art ML research. πŸ§‘β€πŸ”§ Automate - Protect your ML models against the risk of regressions, drift and bias.



Interactive demo

Click the image below to start the demo:

Interactive demo

Product workflow

Installation

Requirements: git, docker and docker-compose

git clone https://github.com/Giskard-AI/giskard.git
cd giskard
docker-compose up -d

After the application is started you can access at:

http://localhost:19000 with default login / password: admin / admin

Upload your model

Interactive demo


Easy upload for any Python model: PyTorch, TensorFlow, Transformers, Scikit-learn, etc.
πŸ‘‰ Documentation

Collect feedback on your model

Interactive demo


Improve ML models with business stakeholders in no time.
πŸ‘‰ Documentation

Get automated test suites in seconds

Interactive demo


Exhaustive test suites, backed by 
State-of-the-Art ML research.
πŸ‘‰ Documentation

Deploy tests in your CI/CD Pipeline

Deploy tests in CI/CD Pipeline


Protect your ML models against the risk of regressions, drift and bias.
πŸ‘‰ Documentation


How to contribute

We welcome contributions from the Machine Learning community!

Read this guide to get started.

About

Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. βš‘οΈπŸ§‘β€πŸ”§

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 50.3%
  • Vue 20.0%
  • Python 13.0%
  • TypeScript 9.0%
  • Jupyter Notebook 5.7%
  • HTML 0.9%
  • Other 1.1%