Skip to content

Latest commit

 

History

History
181 lines (140 loc) · 7.6 KB

3.2_linear-regression-scratch.md

File metadata and controls

181 lines (140 loc) · 7.6 KB

3.2 线性回归的从零开始实现

在了解了线性回归的背景知识之后,现在我们可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。因此,本节将介绍如何只利用TensorGradientTape来实现一个线性回归的训练。

首先,导入本节中实验所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。

%matplotlib inline
import tensorflow as tf
print(tf.__version__)
from matplotlib import pyplot as plt
import random
    2.0.0

3.2.1 生成数据集

我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。设训练数据集样本数为1000,输入个数(特征数)为2。给定随机生成的批量样本特征 $\boldsymbol{X} \in \mathbb{R}^{1000 \times 2}$,我们使用线性回归模型真实权重 $\boldsymbol{w} = [2, -3.4]^\top$ 和偏差 $b = 4.2$,以及一个随机噪声项 $\epsilon$ 来生成标签 $$ \boldsymbol{y} = \boldsymbol{X}\boldsymbol{w} + b + \epsilon $$

其中噪声项 $\epsilon$ 服从均值为0、标准差为0.01的正态分布。噪声代表了数据集中无意义的干扰。下面,让我们生成数据集。

num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = tf.random.normal((num_examples, num_inputs),stddev = 1)
labels = true_w[0] * features[:,0] + true_w[1] * features[:,1] + true_b
labels += tf.random.normal(labels.shape,stddev=0.01)

注意,features的每一行是一个长度为2的向量,而labels的每一行是一个长度为1的向量(标量)。

print(features[0], labels[0])

输出:

(<tf.Tensor: id=31, shape=(2,), dtype=float32, numpy=array([0.24220389, 0.41220406], dtype=float32)>,
 <tf.Tensor: id=35, shape=(), dtype=float32, numpy=3.3064191>)

通过生成第二个特征features[:, 1]和标签 labels 的散点图,可以更直观地观察两者间的线性关系。

def set_figsize(figsize=(3.5, 2.5)):
    plt.rcParams['figure.figsize'] = figsize

set_figsize()
plt.scatter(features[:, 1], labels, 1)

3.2.2 读取数据

在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。这里我们定义一个函数:它每次返回batch_size(批量大小)个随机样本的特征和标签。

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        j = indices[i: min(i+batch_size, num_examples)]
        yield tf.gather(features, axis=0, indices=j), tf.gather(labels, axis=0, indices=j)

让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, y)
    break

输出:

tf.Tensor(
[[ 0.04718596 -1.5959413 ]
 [ 0.3889716  -1.5288432 ]
 [-1.8489572   1.66422   ]
 [-1.3978077  -0.85818154]
 [-0.36940867 -0.619267  ]
 [-0.15660426  1.1231796 ]
 [ 0.89411694  1.5499148 ]
 [ 1.9971682  -0.56981105]
 [-2.1852891   0.18805206]
 [ 1.3222371  -1.0301086 ]], shape=(10, 2), dtype=float32) tf.Tensor(
[ 9.738684   10.164594   -5.15065     4.3305573   5.568048    0.06494669
  0.7251317  10.128626   -0.8036391  10.343082  ], shape=(10,), dtype=float32)

3.2.3 初始化模型参数

我们将权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0。

w = tf.Variable(tf.random.normal((num_inputs, 1), stddev=0.01))
b = tf.Variable(tf.zeros((1,)))

3.2.4 定义模型

下面是线性回归的矢量计算表达式的实现。我们使用matmul函数做矩阵乘法。

def linreg(X, w, b):
    return tf.matmul(X, w) + b

3.2.5 定义损失函数

我们使用上一节描述的平方损失来定义线性回归的损失函数。在实现中,我们需要把真实值y变形成预测值y_hat的形状。以下函数返回的结果也将和y_hat的形状相同。

def squared_loss(y_hat, y):
    return (y_hat - tf.reshape(y, y_hat.shape)) ** 2 /2

3.2.6 定义优化算法

以下的sgd函数实现了上一节中介绍的小批量随机梯度下降算法。它通过不断迭代模型参数来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它除以批量大小来得到平均值。

def sgd(params, lr, batch_size, grads):
    """Mini-batch stochastic gradient descent."""
    for i, param in enumerate(params):
        param.assign_sub(lr * grads[i] / batch_size)

3.2.7 训练模型

在训练中,我们将多次迭代模型参数。在每次迭代中,我们根据当前读取的小批量数据样本(特征X和标签y),通过调用反向函数t.gradients计算小批量随机梯度,并调用优化算法sgd迭代模型参数。由于我们之前设批量大小batch_size为10,每个小批量的损失l的形状为(10, 1)。回忆一下自动求梯度一节。由于变量l并不是一个标量,所以我们可以调用reduce_sum()将其求和得到一个标量,再运行t.gradients得到该变量有关模型参数的梯度。注意在每次更新完参数后不要忘了将参数的梯度清零。

在一个迭代周期(epoch)中,我们将完整遍历一遍data_iter函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设3和0.03。在实践中,大多超参数都需要通过反复试错来不断调节。虽然迭代周期数设得越大模型可能越有效,但是训练时间可能过长。而有关学习率对模型的影响,我们会在后面“优化算法”一章中详细介绍。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        with tf.GradientTape() as t:
            t.watch([w,b])
            l = tf.reduce_sum(loss(net(X, w, b), y))
        grads = t.gradient(l, [w, b])
        sgd([w, b], lr, batch_size, grads)
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, tf.reduce_mean(train_l)))

输出: epoch 1, loss 0.028907 epoch 2, loss 0.000101 epoch 3, loss 0.000049

训练完成后,我们可以比较学到的参数和用来生成训练集的真实参数。它们应该很接近。

print(true_w, w)
print(true_b, b)

输出: ([2, -3.4], <tf.Variable 'Variable:0' shape=(2, 1) dtype=float32, numpy= array([[ 1.9994558], [-3.3993363]], dtype=float32)>) (4.2, <tf.Variable 'Variable:0' shape=(1,) dtype=float32, numpy=array([4.199041], dtype=float32)>)

小结

  • 可以看出,仅使用VariablesGradientTape模块就可以很容易地实现一个模型。接下来,本书会在此基础上描述更多深度学习模型,并介绍怎样使用更简洁的代码(见下一节)来实现它们。

注:本节除了代码之外与原书基本相同,原书传送门