|
| 1 | +# Matrix Operations in Python |
| 2 | + |
| 3 | +A comprehensive collection of Python examples demonstrating common matrix operations and algorithms. This repository contains practical implementations for working with 2D arrays (matrices) in Python. |
| 4 | + |
| 5 | +## Table of Contents |
| 6 | + |
| 7 | +- [Overview](#overview) |
| 8 | +- [Examples Included](#examples-included) |
| 9 | +- [Getting Started](#getting-started) |
| 10 | +- [Code Examples](#code-examples) |
| 11 | +- [Example Outputs](#example-outputs) |
| 12 | +- [Key Concepts](#key-concepts) |
| 13 | +- [Contributing](#contributing) |
| 14 | + |
| 15 | +## Overview |
| 16 | + |
| 17 | +This project demonstrates various matrix operations commonly used in programming interviews, data analysis, and algorithm development. Each example includes multiple solution approaches, from basic loops to advanced list comprehensions. |
| 18 | + |
| 19 | +## Examples Included |
| 20 | + |
| 21 | +### 1. Count Element Occurrences |
| 22 | +Count how many times each number appears in a matrix. |
| 23 | + |
| 24 | +**Features:** |
| 25 | +- Dictionary-based counting |
| 26 | +- List comprehension approach |
| 27 | +- Efficient element tracking |
| 28 | + |
| 29 | +### 2. Sum of All Elements |
| 30 | +Calculate the total sum of all numbers in a 2D array. |
| 31 | + |
| 32 | +**Methods:** |
| 33 | +- Nested loop approach |
| 34 | +- List comprehension with `sum()` |
| 35 | + |
| 36 | +### 3. Row Sum Calculation |
| 37 | +Print the sum of elements in each row. |
| 38 | + |
| 39 | +**Output Format:** |
| 40 | +``` |
| 41 | +Sum of Row 0 = 6 |
| 42 | +Sum of Row 1 = 15 |
| 43 | +Sum of Row 2 = 24 |
| 44 | +``` |
| 45 | + |
| 46 | +### 4. Column Sum Calculation |
| 47 | +Calculate and display the sum of elements in each column. |
| 48 | + |
| 49 | +**Algorithm:** |
| 50 | +- Iterate through column indices |
| 51 | +- Sum elements from the same column across all rows |
| 52 | + |
| 53 | +### 5. Find Maximum and Minimum |
| 54 | +Identify the largest and smallest elements in the matrix. |
| 55 | + |
| 56 | +**Approach:** |
| 57 | +- Initialize with first element |
| 58 | +- Compare with all other elements |
| 59 | +- Track both max and min simultaneously |
| 60 | + |
| 61 | +### 6. Even/Odd Number Analysis |
| 62 | +Count and categorize numbers as even or odd. |
| 63 | + |
| 64 | +**Features:** |
| 65 | +- Separate counters for even/odd numbers |
| 66 | +- Lists to store actual even/odd values |
| 67 | +- Modulo operation for classification |
| 68 | + |
| 69 | +### 7. Matrix Transpose (Advanced) |
| 70 | +Convert rows to columns and vice versa. |
| 71 | + |
| 72 | +**Two Solutions:** |
| 73 | +1. **Nested Loops:** Traditional approach with explicit row/column creation |
| 74 | +2. **List Comprehension:** Pythonic one-liner solution |
| 75 | + |
| 76 | +## Code Examples |
| 77 | + |
| 78 | +### 1. Count Element Occurrences |
| 79 | + |
| 80 | +```python |
| 81 | +# Solution 1: Using Dictionary |
| 82 | +matrix_two = [ |
| 83 | + [1, 2, 3], |
| 84 | + [4, 5, 2], |
| 85 | + [5, 8, 3] |
| 86 | +] |
| 87 | + |
| 88 | +count = {} |
| 89 | +for row in matrix_two: |
| 90 | + for element in row: |
| 91 | + if element not in count: |
| 92 | + count[element] = 1 |
| 93 | + else: |
| 94 | + count[element] += 1 |
| 95 | + |
| 96 | +print("Occurrences of elements in matrix:") |
| 97 | +for key, val in count.items(): |
| 98 | + print(f"{key} → {val}") |
| 99 | +``` |
| 100 | + |
| 101 | +```python |
| 102 | +# Solution 2: Using List Comprehension |
| 103 | +list_comp = [item for row in matrix_two for item in row] |
| 104 | +count = {} |
| 105 | +for element in list_comp: |
| 106 | + count[element] = count.get(element, 0) + 1 |
| 107 | +``` |
| 108 | + |
| 109 | +### 2. Sum of All Elements |
| 110 | + |
| 111 | +```python |
| 112 | +# Method 1: Nested loops |
| 113 | +sum_of_elements = 0 |
| 114 | +for row in matrix: |
| 115 | + for element in row: |
| 116 | + sum_of_elements += element |
| 117 | + |
| 118 | +print(f"The sum of all elements: {sum_of_elements}") |
| 119 | +``` |
| 120 | + |
| 121 | +```python |
| 122 | +# Method 2: List comprehension |
| 123 | +sum_of_elements = sum([item for row in matrix for item in row]) |
| 124 | +print(f"The sum using comprehension: {sum_of_elements}") |
| 125 | +``` |
| 126 | + |
| 127 | +### 3. Row Sum Calculation |
| 128 | + |
| 129 | +```python |
| 130 | +for i, row in enumerate(matrix): |
| 131 | + row_sum = sum(row) |
| 132 | + print(f"Sum of Row {i} = {row_sum}") |
| 133 | +``` |
| 134 | + |
| 135 | +### 4. Column Sum Calculation |
| 136 | + |
| 137 | +```python |
| 138 | +num_col = len(matrix_two[0]) |
| 139 | + |
| 140 | +for col in range(num_col): |
| 141 | + total_sum = 0 |
| 142 | + for row in matrix_two: |
| 143 | + total_sum += row[col] |
| 144 | + print(f"Sum of Column {col} = {total_sum}") |
| 145 | +``` |
| 146 | + |
| 147 | +### 5. Find Maximum and Minimum |
| 148 | + |
| 149 | +```python |
| 150 | +max_element = matrix_two[0][0] |
| 151 | +min_element = matrix_two[0][0] |
| 152 | + |
| 153 | +for row in matrix_two: |
| 154 | + for element in row: |
| 155 | + if element > max_element: |
| 156 | + max_element = element |
| 157 | + if element < min_element: |
| 158 | + min_element = element |
| 159 | + |
| 160 | +print(f"Max element: {max_element}") |
| 161 | +print(f"Min element: {min_element}") |
| 162 | +``` |
| 163 | + |
| 164 | +### 6. Even/Odd Number Analysis |
| 165 | + |
| 166 | +```python |
| 167 | +even_odd_dict = {"even": 0, "odd": 0} |
| 168 | +even_numbers = [] |
| 169 | +odd_numbers = [] |
| 170 | + |
| 171 | +for row in matrix_two: |
| 172 | + for element in row: |
| 173 | + if element % 2 == 0: |
| 174 | + even_odd_dict["even"] += 1 |
| 175 | + even_numbers.append(element) |
| 176 | + elif element % 2 == 1: |
| 177 | + even_odd_dict["odd"] += 1 |
| 178 | + odd_numbers.append(element) |
| 179 | + |
| 180 | +print(f"Number of Even elements: {even_odd_dict['even']}") |
| 181 | +print(f"Number of Odd elements: {even_odd_dict['odd']}") |
| 182 | +print(f"Even elements: {even_numbers}") |
| 183 | +print(f"Odd elements: {odd_numbers}") |
| 184 | +``` |
| 185 | + |
| 186 | +### 7. Matrix Transpose |
| 187 | + |
| 188 | +```python |
| 189 | +# Solution 1: Using nested loops |
| 190 | +transpose_matrix = [] |
| 191 | +rows = len(matrix_two) |
| 192 | +cols = len(matrix_two[0]) |
| 193 | + |
| 194 | +for col in range(cols): |
| 195 | + new_row = [] |
| 196 | + for i in range(rows): |
| 197 | + new_row.append(matrix_two[i][col]) |
| 198 | + transpose_matrix.append(new_row) |
| 199 | + |
| 200 | +print("Transpose of matrix:") |
| 201 | +for row in transpose_matrix: |
| 202 | + print(row) |
| 203 | +``` |
| 204 | + |
| 205 | +```python |
| 206 | +# Solution 2: Using list comprehension |
| 207 | +transpose_matrix = [[matrix_two[i][j] for i in range(rows)] |
| 208 | + for j in range(len(matrix_two[0]))] |
| 209 | +print("Transpose of matrix:") |
| 210 | +for row in transpose_matrix: |
| 211 | + print(row) |
| 212 | +``` |
| 213 | + |
| 214 | +## Getting Started |
| 215 | + |
| 216 | +### Prerequisites |
| 217 | +- Python 3.x |
| 218 | +- No external libraries required |
| 219 | + |
| 220 | +### Running the Code |
| 221 | + |
| 222 | +1. Clone or download the code file |
| 223 | +2. Run the Python script: |
| 224 | +```bash |
| 225 | +python matrix_operations.py |
| 226 | +``` |
| 227 | + |
| 228 | +### Sample Matrix Used |
| 229 | +```python |
| 230 | +matrix_two = [ |
| 231 | + [1, 2, 3], |
| 232 | + [4, 5, 2], |
| 233 | + [5, 8, 3] |
| 234 | +] |
| 235 | +``` |
| 236 | + |
| 237 | +## Example Outputs |
| 238 | + |
| 239 | +### Element Occurrence Count |
| 240 | +``` |
| 241 | +Occurrences of elements in matrix: |
| 242 | +1 → 1 |
| 243 | +2 → 2 |
| 244 | +3 → 2 |
| 245 | +4 → 1 |
| 246 | +5 → 2 |
| 247 | +8 → 1 |
| 248 | +``` |
| 249 | + |
| 250 | +### Matrix Transpose |
| 251 | +**Original Matrix:** |
| 252 | +``` |
| 253 | +[1, 2, 3] |
| 254 | +[4, 5, 2] |
| 255 | +[5, 8, 3] |
| 256 | +``` |
| 257 | + |
| 258 | +**Transposed Matrix:** |
| 259 | +``` |
| 260 | +[1, 4, 5] |
| 261 | +[2, 5, 8] |
| 262 | +[3, 2, 3] |
| 263 | +``` |
| 264 | + |
| 265 | +### Even/Odd Analysis |
| 266 | +``` |
| 267 | +Number of Even elements: 4 |
| 268 | +Number of Odd elements: 5 |
| 269 | +Even elements: [2, 4, 2, 8] |
| 270 | +Odd elements: [1, 3, 5, 5, 3] |
| 271 | +``` |
| 272 | + |
| 273 | +## Key Concepts |
| 274 | + |
| 275 | +### Data Structures Used |
| 276 | +- **2D Lists:** For matrix representation |
| 277 | +- **Dictionaries:** For counting and key-value storage |
| 278 | +- **Lists:** For collecting specific elements |
| 279 | + |
| 280 | +### Programming Techniques |
| 281 | +- **Nested Loops:** For matrix traversal |
| 282 | +- **List Comprehensions:** For concise, Pythonic solutions |
| 283 | +- **Enumerate:** For index tracking |
| 284 | +- **Dictionary Methods:** `.get()` for safe key access |
| 285 | + |
| 286 | +### Algorithm Patterns |
| 287 | +- **Matrix Traversal:** Row-by-row and column-by-column access |
| 288 | +- **Element Counting:** Using dictionaries as counters |
| 289 | +- **Matrix Transformation:** Transpose operation |
| 290 | +- **Aggregation:** Sum, max, min operations |
| 291 | + |
| 292 | +### Code Structure |
| 293 | + |
| 294 | +Each example follows this pattern: |
| 295 | +1. **Problem Statement:** Clear description of the task |
| 296 | +2. **Algorithm Explanation:** Step-by-step approach |
| 297 | +3. **Implementation:** Working code with comments |
| 298 | +4. **Alternative Solutions:** Different approaches when applicable |
| 299 | +5. **Sample Output:** Expected results |
| 300 | + |
| 301 | +### Complexity Analysis |
| 302 | + |
| 303 | +| Operation | Time Complexity | Space Complexity | |
| 304 | +|-----------|----------------|------------------| |
| 305 | +| Element Count | O(m×n) | O(k) where k = unique elements | |
| 306 | +| Sum All Elements | O(m×n) | O(1) | |
| 307 | +| Row/Column Sums | O(m×n) | O(1) | |
| 308 | +| Find Max/Min | O(m×n) | O(1) | |
| 309 | +| Matrix Transpose | O(m×n) | O(m×n) | |
| 310 | + |
| 311 | +Where m = number of rows, n = number of columns |
| 312 | + |
| 313 | +### Learning Objectives |
| 314 | + |
| 315 | +After studying this code, you'll understand: |
| 316 | +- Matrix manipulation fundamentals |
| 317 | +- Dictionary usage for counting |
| 318 | +- List comprehension patterns |
| 319 | +- Nested loop structures |
| 320 | +- Matrix transpose algorithms |
| 321 | +- Python best practices for 2D data |
| 322 | + |
| 323 | +### Customization |
| 324 | + |
| 325 | +You can easily modify the examples by: |
| 326 | +- Changing the sample matrix values |
| 327 | +- Adding new matrix operations |
| 328 | +- Implementing different algorithms |
| 329 | +- Extending to larger matrices |
| 330 | + |
| 331 | +### Notes |
| 332 | + |
| 333 | +- All solutions handle rectangular matrices (equal row lengths) |
| 334 | +- Dictionary approach is efficient for sparse counting |
| 335 | +- List comprehensions provide more Pythonic solutions |
| 336 | +- Examples include both basic and advanced implementations |
| 337 | + |
| 338 | +### Contributing |
| 339 | + |
| 340 | +Feel free to: |
| 341 | +- Add new matrix operations |
| 342 | +- Optimize existing solutions |
| 343 | +- Improve documentation |
| 344 | +- Add error handling |
| 345 | +- Extend to 3D arrays |
| 346 | + |
| 347 | +--- |
0 commit comments