forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrf.py
457 lines (389 loc) Β· 20.3 KB
/
crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
from paddlenlp.utils.log import logger
from paddlenlp.layers import sequence_mask
__all__ = ['LinearChainCrf', 'LinearChainCrfLoss', 'ViterbiDecoder']
def log_sum_exp(vec, dim=0):
# Avoid underflow and overflow
max_num = paddle.max(vec, dim)
max_exp = max_num.unsqueeze(-1)
return max_num + paddle.log(paddle.sum(paddle.exp(vec - max_exp), dim))
class LinearChainCrf(nn.Layer):
"""
LinearChainCrf is a linear chain Conditional Random Field layer, it can implement sequential dependencies in the predictions.
Therefore, it can take context into account whereas a classifier predicts a label for a single sample without considering "neighboring" samples.
See https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers for reference.
Args:
num_labels (int):
The label number.
crf_lr (float, optional):
The crf layer learning rate. Defaults to ``0.1``.
with_start_stop_tag (bool, optional):
If set to True, the start tag and stop tag will be considered, the transitions params will be a tensor with a shape of `[num_labels+2, num_labels+2]`.
Else, the transitions params will be a tensor with a shape of `[num_labels, num_labels]`.
"""
def __init__(self, num_labels, crf_lr=0.1, with_start_stop_tag=True):
super(LinearChainCrf, self).__init__()
if with_start_stop_tag:
self.num_tags = num_labels + 2 # Additional [START] and [STOP]
self.start_idx = int(self.num_tags - 1)
self.stop_idx = int(self.num_tags - 2)
else:
self.num_tags = num_labels
self.transitions = self.create_parameter(
attr=paddle.ParamAttr(learning_rate=crf_lr),
shape=[self.num_tags, self.num_tags],
dtype='float32')
self.with_start_stop_tag = with_start_stop_tag
self._initial_alpha = None
self._start_tensor = None
self._stop_tensor = None
self._batch_index = None
self._seq_index = None
self._batch_seq_index = None
def _initialize_alpha(self, batch_size):
# alpha accumulate the path value to get the different next tag
if self._initial_alpha is None or batch_size > self._initial_alpha.shape[
0]:
# Initialized by a small value.
initial_alpha = paddle.full((batch_size, self.num_tags - 1),
dtype='float32',
fill_value=-10000.)
# alpha_start fill_value = 0. > -10000., means the first one step START gets the most score.
alpha_start = paddle.full((batch_size, 1),
dtype='float32',
fill_value=0.)
self._initial_alpha = paddle.concat([initial_alpha, alpha_start],
axis=1)
return self._initial_alpha[:batch_size, :]
def forward(self, inputs, lengths):
"""
Computes the normalization in a linear-chain CRF. See http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.
.. math::
F & = logZ(x) = log\\sum_y exp(score(x,y))
score(x,y) & = \\sum_i Emit(x_i,y_i) + Trans(y_{i-1}, y_i)
p(y_i) & = Emit(x_i,y_i), T(y_{i-1}, y_i) = Trans(y_{i-1}, y_i)
then we can get:
.. math::
F(1) = log\\sum_{y1} exp(p(y_1) + T([START], y1))
.. math::
F(2) & = log\\sum_{y1}\\sum_{y2} exp(p(y_1) + T([START], y1) + p(y_2) + T(y_1,y_2)) \\\\
& = log\\sum_{y2} exp(F(1) + p(y_2) + T(y_1,y_2))
Further, We can get F(n) is a recursive formula with F(n-1).
Args:
inputs (Tensor):
The input predicted tensor. Its dtype is float32 and has a shape of `[batch_size, sequence_length, num_tags]`.
lengths (Tensor):
The input length. Its dtype is int64 and has a shape of `[batch_size]`.
Returns:
Tensor: Returns the normalizers tensor `norm_score`. Its dtype is float32 and has a shape of `[batch_size]`.
"""
batch_size, seq_len, n_labels = inputs.shape
inputs_t_exp = inputs.transpose([1, 0, 2]).unsqueeze(-1)
# trans_exp: batch_size, num_tags, num_tags
trans_exp = self.transitions.unsqueeze(0)
all_alpha = []
if self.with_start_stop_tag:
alpha = self._initialize_alpha(batch_size)
for i, input_exp in enumerate(inputs_t_exp):
# input_exp: batch_size, num_tags, num_tags
# alpha_exp: batch_size, num_tags, num_tags
if i == 0 and not self.with_start_stop_tag:
alpha = inputs[:, 0]
else:
alpha_exp = alpha.unsqueeze(1)
# F(n) = logsumexp(F(n-1) + p(y_n) + T(y_{n-1}, y_n))
mat = input_exp + trans_exp + alpha_exp
alpha = log_sum_exp(mat, 2).squeeze(-1)
all_alpha.append(alpha)
# Get the valid alpha
all_alpha = paddle.stack(all_alpha).transpose([1, 0, 2])
batch_index = self._get_batch_index(batch_size)
last_index = lengths - 1
idxs = paddle.stack([batch_index, last_index], axis=1)
alpha = paddle.gather_nd(all_alpha, idxs)
if self.with_start_stop_tag:
# The last one step
alpha += self.transitions[self.stop_idx].unsqueeze(0)
norm_score = log_sum_exp(alpha, 1) #.squeeze(-1)
return norm_score
def gold_score(self, inputs, labels, lengths):
"""
Computes the unnormalized score for a tag sequence.
$$ score(x,y) = \\sum_i Emit(x_i,y_i) + Trans(y_{i-1}, y_i) $$
Args:
inputs (Tensor):
The input predicted tensor. Its dtype is float32 and has a shape of `[batch_size, sequence_length, num_tags]`.
labels (Tensor):
The input label tensor. Its dtype is int64 and has a shape of `[batch_size, sequence_length]`
lengths (Tensor):
The input length. Its dtype is int64 and has a shape of `[batch_size]`.
Returns:
Tensor: Returns the unnormalized sequence scores tensor `unnorm_score`. Its dtype is float32 and has a shape of `[batch_size]`.
"""
unnorm_score = self._point_score(
inputs, labels, lengths) + self._trans_score(labels, lengths)
return unnorm_score
def _point_score(self, inputs, labels, lengths):
batch_size, seq_len, n_labels = inputs.shape
# Get the true label logit value
flattened_inputs = inputs.reshape([-1])
offsets = paddle.unsqueeze(
self._get_batch_index(batch_size) * seq_len * n_labels, 1)
offsets += paddle.unsqueeze(self._get_seq_index(seq_len) * n_labels, 0)
flattened_tag_indices = paddle.reshape(offsets + labels, [-1])
scores = paddle.gather(flattened_inputs, flattened_tag_indices).reshape(
[batch_size, seq_len])
mask = paddle.cast(
sequence_mask(self._get_batch_seq_index(batch_size, seq_len),
lengths), 'float32')
mask = mask[:, :seq_len]
mask_scores = scores * mask
score = paddle.sum(mask_scores, 1)
return score
def _trans_score(self, labels, lengths):
batch_size, seq_len = labels.shape
if self.with_start_stop_tag:
# Add START and STOP on either side of the labels
start_tensor, stop_tensor = self._get_start_stop_tensor(batch_size)
labels_ext = paddle.concat([start_tensor, labels, stop_tensor],
axis=1)
mask = paddle.cast(
sequence_mask(self._get_batch_seq_index(batch_size, seq_len),
lengths + 1), 'int64')
pad_stop = paddle.full((batch_size, seq_len + 2),
dtype='int64',
fill_value=self.stop_idx)
labels_ext = (1 - mask) * pad_stop + mask * labels_ext
else:
mask = paddle.cast(
sequence_mask(self._get_batch_seq_index(batch_size, seq_len),
lengths), 'int64')
labels_ext = labels
start_tag_indices = labels_ext[:, :-1]
stop_tag_indices = labels_ext[:, 1:]
# Encode the indices in a flattened representation.
transition_indices = start_tag_indices * self.num_tags + stop_tag_indices
flattened_transition_indices = transition_indices.reshape([-1])
flattened_transition_params = paddle.flatten(self.transitions)
scores = paddle.gather(flattened_transition_params,
flattened_transition_indices).reshape(
[batch_size, -1])
mask_scores = scores * mask[:, 1:]
# Accumulate the transition score
score = paddle.sum(mask_scores, 1)
return score
def _get_start_stop_tensor(self, batch_size):
if self._start_tensor is None or self._stop_tensor is None or batch_size != self._start_tensor.shape[
0]:
self._start_tensor = paddle.full((batch_size, 1),
dtype='int64',
fill_value=self.start_idx)
self._stop_tensor = paddle.full((batch_size, 1),
dtype='int64',
fill_value=self.stop_idx)
return self._start_tensor, self._stop_tensor
def _get_batch_index(self, batch_size):
if self._batch_index is None or batch_size != self._batch_index.shape[0]:
self._batch_index = paddle.arange(end=batch_size, dtype="int64")
return self._batch_index
def _get_seq_index(self, length):
if self._seq_index is None or length > self._seq_index.shape[0]:
self._seq_index = paddle.arange(end=length, dtype="int64")
return self._seq_index[:length]
def _get_batch_seq_index(self, batch_size, length):
if self._batch_seq_index is None or length + 2 > self._batch_seq_index.shape[
1] or batch_size > self._batch_seq_index.shape[0]:
self._batch_seq_index = paddle.cumsum(
paddle.ones([batch_size, length + 2], "int64"), axis=1) - 1
if self.with_start_stop_tag:
return self._batch_seq_index[:batch_size, :length + 2]
else:
return self._batch_seq_index[:batch_size, :length]
class LinearChainCrfLoss(nn.Layer):
"""
The negative log-likelihood for linear chain Conditional Random Field (CRF).
Args:
crf (LinearChainCrf):
The `LinearChainCrf` network object. Its parameter will be used to calculate the loss.
"""
def __init__(self, crf):
super(LinearChainCrfLoss, self).__init__()
self.crf = crf
if isinstance(crf, paddle.Tensor):
raise ValueError(
"From paddlenlp >= 2.0.0b4, the first param of LinearChainCrfLoss shoule be a LinearChainCrf object. For input parameter 'crf.transitions', you can remove '.transitions' to 'crf'"
)
def forward(self, inputs, lengths, labels, old_version_labels=None):
"""
Calculate the crf loss. Let $$ Z(x) = \\sum_{y'}exp(score(x,y')) $$, means the sum of all path scores,
then we have $$ loss = -logp(y|x) = -log(exp(score(x,y))/Z(x)) = -score(x,y) + logZ(x) $$
Args:
inputs (Tensor):
The input predicted tensor. Its dtype is float32 and has a shape of `[batch_size, sequence_length, num_tags]`.
lengths (Tensor):
The input length. Its dtype is int64 and has a shape of `[batch_size]`.
labels (Tensor) :
The input label tensor. Its dtype is int64 and has a shape of `[batch_size, sequence_length]`
old_version_labels (Tensor, optional): Unnecessary parameter for compatibility with older versions. Defaults to ``None``.
Returns:
Tensor: The crf loss. Its dtype is float32 and has a shape of `[batch_size]`.
"""
# Note: When closing to convergence, the loss could be a small negative number. This may caused by underflow when calculating exp in logsumexp.
# We add relu here to avoid negative loss. In theory, the crf loss must be greater than or equal to 0, relu will not impact on it.
if old_version_labels is not None:
# TODO(qiujinxuan): rm compatibility support after lic.
labels = old_version_labels
if not getattr(self, "has_warn", False):
logger.warning(
'Compatibility Warning: The params of LinearChainCrfLoss.forward has been modified. The third param is `labels`, and the fourth is not necessary. Please update the usage.'
)
self.has_warn = True
loss = nn.functional.relu(
self.crf.forward(inputs, lengths) -
self.crf.gold_score(inputs, labels, lengths))
return loss
class ViterbiDecoder(nn.Layer):
"""
ViterbiDecoder can decode the highest scoring sequence of tags, it should only be used at test time.
Args:
transitions (Tensor):
The transition matrix. Its dtype is float32 and has a shape of `[num_tags, num_tags]`.
with_start_stop_tag (bool, optional):
If set to True, the last row and the last column of transitions will be considered as start tag,
the the penultimate row and the penultimate column of transitions will be considered as stop tag.
Else, all the rows and columns will be considered as the real tag. Defaults to ``None``.
"""
def __init__(self, transitions, with_start_stop_tag=True):
super(ViterbiDecoder, self).__init__()
self.transitions = transitions
self.with_start_stop_tag = with_start_stop_tag
# If consider start and stop, -1 should be START and -2 should be STOP.
if with_start_stop_tag:
self.start_idx = -1
self.stop_idx = -2
self.num_tags = paddle.shape(transitions)[0]
self._initial_alpha = None
self._index = None
self._batch_index = None
self._batch_seq_index = None
def _initialize_alpha(self, batch_size):
# alpha accumulate the path value to get the different next tag
if self._initial_alpha is None or batch_size > paddle.shape(
self._initial_alpha)[0]:
# Initialized by a small value.
initial_alpha = paddle.full([batch_size, self.num_tags - 1],
dtype='float32',
fill_value=-10000.)
# alpha_start fill_value = 0. > -10000., means the first one step START gets the most score.
alpha_start = paddle.full([batch_size, 1],
dtype='float32',
fill_value=0.)
self._initial_alpha = paddle.concat([initial_alpha, alpha_start],
axis=1)
return paddle.slice(self._initial_alpha,
axes=[0],
starts=[0],
ends=[batch_size])
def forward(self, inputs, lengths):
"""
Decode the highest scoring sequence of tags.
Args:
inputs (Tensor):
The unary emission tensor. Its dtype is float32 and has a shape of `[batch_size, sequence_length, num_tags]`.
length (Tensor):
The input length tensor storing real length of each sequence for correctness. Its dtype is int64 and has a shape of `[batch_size]`.
Returns:
tuple: Returns tuple (scores, paths). The `scores` tensor containing the score for the Viterbi sequence.
Its dtype is float32 and has a shape of `[batch_size]`.
The `paths` tensor containing the highest scoring tag indices.
Its dtype is int64 and has a shape of `[batch_size, sequence_length]`.
"""
input_shape = paddle.shape(inputs)
batch_size = input_shape[0]
seq_len = input_shape[1]
n_label = input_shape[2]
inputs_t = inputs.transpose([1, 0, 2])
trans_exp = self.transitions.unsqueeze(0).expand(
[batch_size, n_label, n_label])
historys = []
left_length = lengths.clone()
max_seq_len = left_length.max()
# no need to expand the 'mask' in the following iteration
left_length = left_length.unsqueeze(-1).expand([batch_size, n_label])
if self.with_start_stop_tag:
alpha = self._initialize_alpha(batch_size)
else:
alpha = paddle.zeros((batch_size, self.num_tags), dtype='float32')
for i, logit in enumerate(inputs_t[:max_seq_len]):
# if not with_start_stop_tag, the first label has not antecedent tag.
if i == 0 and not self.with_start_stop_tag:
alpha = logit
left_length = left_length - 1
continue
alpha_exp = alpha.unsqueeze(2)
# alpha_trn_sum: batch_size, n_labels, n_labels
alpha_trn_sum = alpha_exp + trans_exp
# alpha_max: batch_size, n_labels
# We don't include the emission scores here because the max does not depend on them (we add them in below)
alpha_max = alpha_trn_sum.max(1)
# If with_start_stop_tag, the first antecedent tag must be START, else the first label has not antecedent tag.
# So we can record the path from i=1.
if i >= 1:
alpha_argmax = alpha_trn_sum.argmax(1)
historys.append(alpha_argmax)
# Now add the emission scores
alpha_nxt = alpha_max + logit
mask = paddle.cast((left_length > 0), dtype='float32')
alpha = mask * alpha_nxt + (1 - mask) * alpha
if self.with_start_stop_tag:
mask = paddle.cast((left_length == 1), dtype='float32')
alpha += mask * trans_exp[:, self.stop_idx]
left_length = left_length - 1
# last_ids: batch_size
scores, last_ids = alpha.max(1), alpha.argmax(1)
if max_seq_len == 1:
return scores, last_ids.unsqueeze(1)
# Trace back the best path
# historys: seq_len, batch_size, n_labels
historys = paddle.stack(historys)
left_length = left_length[:, 0]
tag_mask = paddle.cast((left_length >= 0), 'int64')
last_ids_update = last_ids * tag_mask
batch_path = [last_ids_update]
batch_offset = self._get_batch_index(batch_size) * n_label
historys = paddle.reverse(historys, [0])
for hist in historys:
# hist: batch_size, n_labels
left_length = left_length + 1
gather_idx = batch_offset + last_ids
tag_mask = paddle.cast((left_length > 0), 'int64')
last_ids_update = paddle.gather(hist.flatten(),
gather_idx) * tag_mask
zero_len_mask = paddle.cast((left_length == 0), 'int64')
last_ids_update = last_ids_update * (
1 - zero_len_mask) + last_ids * zero_len_mask
batch_path.append(last_ids_update)
tag_mask = paddle.cast((left_length >= 0), 'int64')
last_ids = last_ids_update + last_ids * (1 - tag_mask)
batch_path = paddle.reverse(paddle.stack(batch_path, 1), [1])
return scores, batch_path
def _get_batch_index(self, batch_size):
if self._batch_index is None or batch_size != paddle.shape(
self._batch_index)[0]:
self._batch_index = paddle.arange(end=batch_size, dtype="int64")
return self._batch_index