forked from sky-big/RabbitMQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsets.erl
562 lines (467 loc) · 21.3 KB
/
sets.erl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2000-2011. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% We use the dynamic hashing techniques by Per-�ke Larsson as
%% described in "The Design and Implementation of Dynamic Hashing for
%% Sets and Tables in Icon" by Griswold and Townsend. Much of the
%% terminology comes from that paper as well.
%% The segments are all of the same fixed size and we just keep
%% increasing the size of the top tuple as the table grows. At the
%% end of the segments tuple we keep an empty segment which we use
%% when we expand the segments. The segments are expanded by doubling
%% every time n reaches maxn instead of increasing the tuple one
%% element at a time. It is easier and does not seem detrimental to
%% speed. The same applies when contracting the segments.
%%
%% Note that as the order of the keys is undefined we may freely
%% reorder keys within in a bucket.
-module(sets_test).
%% Standard interface.
-export([new/0,is_set/ 1 ,size/1 ,to_list/1,from_list/ 1 ]).
-export([is_element/2,add_element/ 2 ,del_element/2 ]).
-export([union/2,union/ 1 ,intersection/2 ,intersection/1]).
-export([is_disjoint/2]).
-export([subtract/2,is_subset/ 2 ]).
-export([fold/3,filter/ 2 ]).
%% Note: mk_seg/1 must be changed too if seg_size is changed.
-define(seg_size, 16). %% slot激活的初始化个数
-define(max_seg, 32).
-define(expand_load, 5).
-define(contract_load, 3).
-define(exp_size, ?seg_size * ?expand_load ). %% 扩张阈值 初始值为16*5=80
-define(con_size, ?seg_size * ?contract_load ). %% 收缩阈值 初始值为16*3=48
%%------------------------------------------------------------------------------
-type seg() :: tuple().
-type segs() :: tuple().
%% Define a hash set. The default values are the standard ones.
-record(set,
{size= 0 :: non_neg_integer(), % Number of elements(元素的数量)
n= ?seg_size :: non_neg_integer(), % Number of active slots(已经激活的的slot数量)
maxn= ?seg_size :: pos_integer(), % Maximum slots(最大slots数)
bso= ?seg_size div 2 :: non_neg_integer(), % Buddy slot offset(最大bucket数散列表中当前允许的最大bucket数量,扩张操作需要据此判断是否要增加新的bucket区段,初始为8)
exp_size= ?exp_size :: non_neg_integer(), % Size to expand at(扩张阈值 初始值为16*5=80,当字典中元素个数超过这个值时,字典需要扩展)
con_size= ?con_size :: non_neg_integer(), % Size to contract at(收缩阈值 初始值为16*3=48,当字典中元素个数少于这个值时,字典需要压缩(减少slots的数量))
empty :: seg(), % Empty segment(作为扩展segs时的初始化的默认值)
segs :: segs() % Segments(Segments 所有的数据存放的地方,真正储存数量的地方,
% 初始结构为{seg},每经过一次扩展,seg的数量翻倍,seg的结构为{[],[],...},元组中列表的个数为?seg_size定义的大小, 这里的列表叫做bucket)
}).
%% A declaration equivalent to the following one is hard-coded in erl_types.
%% That declaration contains hard-coded information about the #set{}
%% record and the types of its fields. So, please make sure that any
%% changes to its structure are also propagated to erl_types.erl.
%%
%% -opaque set() :: #set{}.
%%------------------------------------------------------------------------------
%% new() -> Set
-spec new() -> set().
%% 创建一个新的set数据结构
new() ->
Empty = mk_seg(?seg_size ),
#set{empty = Empty , segs = {Empty }}.
%% is_set(Set) -> boolean().
%% Return 'true' if Set is a set of elements, else 'false'.
-spec is_set( Set ) -> boolean() when
Set :: term().
%% 判断当前结构是set结构
is_set(#set{}) -> true;
is_set(_) -> false.
%% size(Set) -> int().
%% Return the number of elements in Set.
-spec size( Set ) -> non_neg_integer() when
Set :: set().
%% 拿到set数据结构中的数据元素的个数
size(S) -> S#set.size.
%% to_list(Set) -> [Elem].
%% Return the elements in Set as a list.
-spec to_list( Set ) -> List when
Set :: set(),
List :: [term()].
%% 将set数据结构中的数据元素全部转化为list元素
to_list(S) ->
fold( fun (Elem , List) -> [Elem | List] end, [], S ).
%% from_list([Elem]) -> Set.
%% Build a set from the elements in List.
-spec from_list( List ) -> Set when
List :: [term()],
Set :: set().
%% 通过列表创建一个新的set数据结构
from_list(L) ->
lists:foldl( fun (E , S) -> add_element( E , S ) end, new(), L ).
%% is_element(Element, Set) -> boolean().
%% Return 'true' if Element is an element of Set, else 'false'.
-spec is_element( Element , Set ) -> boolean() when
Element :: term(),
Set :: set().
%% 判断E是否是set数据结构中的元素
is_element(E, S) ->
%% 计算slot,主要是根据hash值来计算
Slot = get_slot(S , E),
%% 根据槽位Slot得到对应的bucket数据
Bkt = get_bucket(S , Slot),
%% 判断元素是否在列表中
lists:member( E , Bkt ).
%% add_element(Element, Set) -> Set.
%% Return Set with Element inserted in it.
-spec add_element( Element , Set1 ) -> Set2 when
Element :: term(),
Set1 :: set(),
Set2 :: set().
%% 向set数据结构中添加元素
add_element(E, S0) ->
%% 计算slot,主要是根据hash值来计算
Slot = get_slot(S0 , E),
%% 根据槽位Slot得到对应的bucket数据,然后执行相应的操作
{ S1 ,Ic } = on_bucket(fun ( B0 ) -> add_bkt_el(E, B0, B0) end, S0 , Slot ),
%% 如果元素数量超过上限则需要对set数据结构进行扩展
maybe_expand( S1 , Ic ).
-spec add_bkt_el( T , [T ], [T]) -> {[ T ], 0 | 1}.
%% 增加元素的实际操作
add_bkt_el(E, [E | _], Bkt) -> {Bkt, 0};
add_bkt_el(E, [_ | B], Bkt) ->
add_bkt_el( E , B , Bkt);
add_bkt_el(E, [], Bkt) -> {[ E | Bkt ], 1}.
%% del_element(Element, Set) -> Set.
%% Return Set but with Element removed.
-spec del_element( Element , Set1 ) -> Set2 when
Element :: term(),
Set1 :: set(),
Set2 :: set().
%% 将set数据结构中的E元素删除掉
del_element(E, S0) ->
%% 计算slot,主要是根据hash值来计算
Slot = get_slot( S0 , E ),
%% 根据槽位Slot得到对应的bucket数据,然后执行相应的操作
{S1,Dc} = on_bucket( fun (B0 ) -> del_bkt_el( E , B0 ) end, S0 , Slot ),
%% 如果元素数量小于需要收缩的数量,则对set数据结构进行收缩操作
maybe_contract( S1 , Dc ).
-spec del_bkt_el( T , [T ]) -> {[ T ], 0 | 1}.
%% 实际删除元素的操作函数
del_bkt_el(E, [E | Bkt]) -> {Bkt, 1};
del_bkt_el(E, [Other | Bkt0 ]) ->
{ Bkt1 , Dc } = del_bkt_el(E, Bkt0),
{[ Other | Bkt1 ], Dc};
del_bkt_el(_, []) -> {[], 0 }.
%% union(Set1, Set2) -> Set
%% Return the union of Set1 and Set2.
-spec union( Set1 , Set2 ) -> Set3 when
Set1 :: set(),
Set2 :: set(),
Set3 :: set().
%% 将S1和S2这两个set数据结构进行合并(S2的数据数量大于S1的,则将S1的数据合并到S2中)
union(S1, S2) when S1 #set.size < S2 #set.size ->
fold(fun ( E , S ) -> add_element( E , S ) end, S2 , S1 );
%% 将S1和S2这两个set数据结构进行合并(S1的数据数量大于S2的,则将S2的数据合并到S1中)
union(S1, S2) ->
fold(fun ( E , S ) -> add_element( E , S ) end, S1 , S2 ).
%% union([Set]) -> Set
%% Return the union of the list of sets.
-spec union( SetList ) -> Set when
SetList :: [set()],
Set :: set().
%% 将列表中所有的set数据结构进行合并
union([S1, S2 | Ss]) ->
union1(union( S1 , S2 ), Ss);
union([S]) -> S;
union([]) -> new().
-spec union1(set(), [set()]) -> set().
union1(S1, [S2 | Ss]) ->
union1(union( S1 , S2 ), Ss);
union1(S1, []) -> S1 .
%% intersection(Set1, Set2) -> Set.
%% Return the intersection of Set1 and Set2.
-spec intersection( Set1 , Set2 ) -> Set3 when
Set1 :: set(),
Set2 :: set(),
Set3 :: set().
%% 获取S1和S2这两个set数据结构的交集(S2中的数据量大于S1,则遍历S1数据结构)
intersection(S1, S2) when S1 #set.size < S2 #set.size ->
filter(fun ( E ) -> is_element(E, S2) end, S1 );
%% 获取S1和S2这两个set数据结构的交集(S2中的数据量小于等于S1,则遍历S2数据结构)
intersection(S1, S2) ->
filter(fun ( E ) -> is_element(E, S1) end, S2 ).
%% intersection([Set]) -> Set.
%% Return the intersection of the list of sets.
-spec intersection( SetList ) -> Set when
SetList :: [set(),...],
Set :: set().
%% 获取set数据结构列表中所有set的交集
intersection([S1, S2 | Ss]) ->
intersection1(intersection( S1 , S2 ), Ss);
intersection([S]) -> S.
-spec intersection1(set(), [set()]) -> set().
intersection1(S1, [S2 | Ss]) ->
intersection1(intersection( S1 , S2 ), Ss);
intersection1(S1, []) -> S1 .
%% is_disjoint(Set1, Set2) -> boolean().
%% Check whether Set1 and Set2 are disjoint.
-spec is_disjoint( Set1 , Set2 ) -> boolean() when
Set1 :: set(),
Set2 :: set().
%% disjoint:不相交的
%% 判断S1和S2这两个set数据结构是不相交的
is_disjoint(S1, S2) when S1 #set.size < S2 #set.size ->
fold( fun (_ , false) -> false;
( E , true) -> not is_element( E , S2 )
end , true, S1 );
is_disjoint(S1, S2) ->
fold( fun (_ , false) -> false;
( E , true) -> not is_element( E , S1 )
end , true, S2 ).
%% subtract(Set1, Set2) -> Set.
%% Return all and only the elements of Set1 which are not also in
%% Set2.
-spec subtract( Set1 , Set2 ) -> Set3 when
Set1 :: set(),
Set2 :: set(),
Set3 :: set().
%% 将S2中存在于S1中的元素,从S1结构中去除掉,即减去交集
subtract(S1, S2) ->
filter( fun (E ) -> not is_element( E , S2 ) end, S1 ).
%% is_subset(Set1, Set2) -> boolean().
%% Return 'true' when every element of Set1 is also a member of
%% Set2, else 'false'.
-spec is_subset( Set1 , Set2 ) -> boolean() when
Set1 :: set(),
Set2 :: set().
%% 判断S1和S2这两个set数据结构是否存在交集
is_subset(S1, S2) ->
fold( fun (E , Sub) -> Sub andalso is_element( E , S2 ) end, true, S1 ).
%% fold(Fun, Accumulator, Set) -> Accumulator.
%% Fold function Fun over all elements in Set and return Accumulator.
-spec fold( Function , Acc0 , Set) -> Acc1 when
Function :: fun ((E :: term(),AccIn) -> AccOut),
Set :: set(),
Acc0 :: T ,
Acc1 :: T ,
AccIn :: T ,
AccOut :: T .
%% 对set数据结构进行foldl操作
fold(F, Acc, D) -> fold_set( F , Acc , D).
%% filter(Fun, Set) -> Set.
%% Filter Set with Fun.
-spec filter( Pred , Set1 ) -> Set2 when
Pred :: fun ((E :: term()) -> boolean()),
Set1 :: set(),
Set2 :: set().
%% 给set数据结构进行过滤操作
filter(F, D) -> filter_set( F , D ).
%% get_slot(Hashdb, Key) -> Slot.
%% Get the slot. First hash on the new range, if we hit a bucket
%% which has not been split use the unsplit buddy bucket.
-spec get_slot(set(), term()) -> non_neg_integer().
%% 对Key进行Hash得到对应的Slot槽位号
get_slot(T, Key) ->
H = erlang:phash(Key , T#set.maxn),
if
H > T #set.n -> H - T#set.bso;
true -> H
end .
%% get_bucket(Hashdb, Slot) -> Bucket.
-spec get_bucket(set(), non_neg_integer()) -> term().
%% 从T这个set数据结构中通过Slot拿到对应的bucket数据
get_bucket(T, Slot) -> get_bucket_s( T #set.segs, Slot ).
%% on_bucket(Fun, Hashdb, Slot) -> {NewHashDb,Result}.
%% Apply Fun to the bucket in Slot and replace the returned bucket.
-spec on_bucket( fun ((_ ) -> {[ _ ], 0 | 1}), set(), non_neg_integer()) ->
{set(), 0 | 1 }.
on_bucket(F, T, Slot) ->
SegI = (( Slot -1 ) div ?seg_size ) + 1 ,
BktI = (( Slot -1 ) rem ?seg_size ) + 1 ,
Segs = T#set.segs,
Seg = element( SegI , Segs ),
B0 = element( BktI , Seg ),
{B1, Res} = F(B0), %Op on the bucket.
{T#set{segs = setelement( SegI , Segs , setelement(BktI, Seg, B1 ))},Res }.
%% fold_set(Fun, Acc, Dictionary) -> Dictionary.
%% filter_set(Fun, Dictionary) -> Dictionary.
%% Work functions for fold and filter operations. These traverse the
%% hash structure rebuilding as necessary. Note we could have
%% implemented map and hash using fold but these should be faster.
%% We hope!
%% 对set数据结构进行foldl操作
fold_set(F, Acc, D) when is_function( F , 2 ) ->
Segs = D #set.segs,
fold_segs( F , Acc , Segs, tuple_size( Segs )).
%% 对segs进行foldl操作
fold_segs(F, Acc, Segs, I) when I >= 1 ->
Seg = element(I , Segs),
fold_segs( F , fold_seg(F , Acc, Seg, tuple_size( Seg )), Segs , I - 1);
fold_segs(_, Acc, _, _) -> Acc.
%% 对seg进行foldl操作
fold_seg(F, Acc, Seg, I) when I >= 1 ->
fold_seg( F , fold_bucket(F , Acc, element( I , Seg )), Seg, I - 1);
fold_seg(_, Acc, _, _) -> Acc.
%% 对bucket进程foldl操作
fold_bucket(F, Acc, [E | Bkt]) ->
fold_bucket( F , F (E, Acc), Bkt);
fold_bucket(_, Acc, []) -> Acc .
%% 根据F函数过来掉D这个set数据结构中的元素
filter_set(F, D) when is_function( F , 1 ) ->
Segs0 = tuple_to_list(D #set.segs),
{ Segs1 , Fc } = filter_seg_list(F, Segs0, [], 0 ),
maybe_contract( D #set{segs = list_to_tuple(Segs1 )}, Fc).
%% 过滤segs中的元素
filter_seg_list(F, [Seg | Segs], Fss, Fc0) ->
Bkts0 = tuple_to_list(Seg ),
{ Bkts1 , Fc1 } = filter_bkt_list(F, Bkts0, [], Fc0 ),
filter_seg_list( F , Segs , [list_to_tuple(Bkts1) | Fss ], Fc1 );
filter_seg_list(_, [], Fss, Fc) ->
{lists:reverse( Fss , []),Fc }.
%% 过滤seg中的元素
filter_bkt_list(F, [Bkt0 | Bkts], Fbs, Fc0) ->
{ Bkt1 , Fc1 } = filter_bucket(F, Bkt0, [], Fc0 ),
filter_bkt_list( F , Bkts , [Bkt1 | Fbs], Fc1);
filter_bkt_list(_, [], Fbs, Fc) ->
{lists:reverse( Fbs ), Fc }.
%% 过滤掉bucket中的元素
filter_bucket(F, [E | Bkt], Fb, Fc) ->
case F (E) of
true -> filter_bucket(F , Bkt, [E | Fb], Fc);
false -> filter_bucket(F , Bkt, Fb, Fc + 1)
end ;
filter_bucket(_, [], Fb, Fc) -> {Fb, Fc}.
%% get_bucket_s(Segments, Slot) -> Bucket.
%% put_bucket_s(Segments, Slot, Bucket) -> NewSegments.
%% 根据Slot槽位号得到对应的bucket数据
get_bucket_s(Segs, Slot) ->
SegI = ((Slot - 1) div ?seg_size ) + 1 ,
BktI = ((Slot - 1) rem ?seg_size ) + 1 ,
element( BktI , element(SegI , Segs)).
%% 向Slot槽位号设置Bkt元素列表
put_bucket_s(Segs, Slot, Bkt) ->
SegI = ((Slot - 1) div ?seg_size ) + 1 ,
BktI = ((Slot - 1) rem ?seg_size ) + 1 ,
Seg = setelement(BktI , element(SegI, Segs), Bkt),
setelement( SegI , Segs , Seg).
-spec maybe_expand(set(), 0 | 1 ) -> set().
maybe_expand(T0, Ic) when T0 #set.size + Ic > T0#set.exp_size ->
%% 如果当前已经激活的slot数量等于当前最大的slot数量,则将当前的slot数量翻倍
T = maybe_expand_segs(T0 ), %Do we need more segments.
N = T #set.n + 1, %Next slot to expand into
Segs0 = T #set.segs,
Slot1 = N - T#set.bso,
%% 得到Slot1对应的bucket数据
B = get_bucket_s(Segs0 , Slot1),
Slot2 = N ,
%% 将Slot1中的数据重新进行hash操作
{ B1 , B2 } = rehash(B, Slot1, Slot2, T#set.maxn),
%% 将映射在Slot1中的数据存入Slot1中
Segs1 = put_bucket_s(Segs0 , Slot1, B1),
%% 将映射在Slot2中的数据存入Slot2中
Segs2 = put_bucket_s(Segs1 , Slot2, B2),
T #set{size = T #set.size + Ic,
n = N ,
exp_size = N * ?expand_load ,
con_size = N * ?contract_load ,
segs = Segs2 };
%% 当前set数据结构中的数据没有大于需要扩展的大小,则只更新set数据结构中的数据量
maybe_expand(T, Ic) -> T#set{size = T #set.size + Ic }.
-spec maybe_expand_segs(set()) -> set().
%% 如果当前已经激活的slot数量等于当前最大的slot数量,则将当前的slot数量翻倍
maybe_expand_segs(T) when T #set.n =:= T #set.maxn ->
T #set{maxn = 2 * T#set.maxn,
bso = 2 * T #set.bso,
segs = expand_segs( T #set.segs, T #set.empty)};
maybe_expand_segs(T) -> T.
-spec maybe_contract(set(), non_neg_integer()) -> set().
%% 当T这个set数据结构中的数据量大小减去丢弃的Dc个元素后如果小于set数据结构收缩的下限值,则需要对set数据结构进行收缩操作
maybe_contract(T, Dc) when T #set.size - Dc < T#set.con_size,
T #set.n > ?seg_size ->
N = T#set.n,
Slot1 = N - T #set.bso,
Segs0 = T #set.segs,
%% 拿到Slot1对应的bucket数据
B1 = get_bucket_s( Segs0 , Slot1 ),
Slot2 = N ,
%% 拿到Slot2对应的bucket数据
B2 = get_bucket_s( Segs0 , Slot2 ),
%% 将Slot1和Slot2中的元素全部存入Slot1对应的bucket中
Segs1 = put_bucket_s( Segs0 , Slot1 , B1 ++ B2),
%% 将Slot2中的元素清空
Segs2 = put_bucket_s( Segs1 , Slot2 , []), %Clear the upper bucket
%% 将当前激活的Slot数量减一
N1 = N - 1,
%% 如果当前激活的slot数量等于bso的值,则需要正的对set数据结构进行收缩操作
maybe_contract_segs( T #set{size = T #set.size - Dc,
n = N1 ,
exp_size = N1 * ?expand_load ,
con_size = N1 * ?contract_load ,
segs = Segs2 });
%% 当T这个set数据结构中的数据量大小减去丢弃的Dc个元素后如果大于等于set数据结构收缩的下限值,则只更新当前set数据结构的元素数量
maybe_contract(T, Dc) -> T#set{size = T #set.size - Dc }.
-spec maybe_contract_segs(set()) -> set().
%% 如果当前激活的slot数量等于bso的值,则需要正的对set数据结构进行收缩操作
maybe_contract_segs(T) when T #set.n =:= T #set.bso ->
T#set{maxn = T #set.maxn div 2,
bso = T #set.bso div 2,
segs = contract_segs( T #set.segs)};
maybe_contract_segs(T) -> T.
%% rehash(Bucket, Slot1, Slot2, MaxN) -> {Bucket1,Bucket2}.
-spec rehash([ T ], integer(), pos_integer(), pos_integer()) -> {[T ],[T ]}.
%% 对列表中的元素重新进行hash操作得到新的hash值
rehash([E | T], Slot1, Slot2, MaxN) ->
{ L1 , L2 } = rehash(T, Slot1, Slot2, MaxN),
case erlang:phash(E , MaxN) of
Slot1 -> {[E | L1], L2};
Slot2 -> {L1, [E | L2]}
end ;
rehash([], _, _, _) -> {[], []}.
%% mk_seg(Size) -> Segment.
-spec mk_seg( 16 ) -> seg().
%% 单个setment初始化结构
mk_seg(16) -> {[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []}.
%% expand_segs(Segs, EmptySeg) -> NewSegs.
%% contract_segs(Segs) -> NewSegs.
%% Expand/contract the segment tuple by doubling/halving the number
%% of segments. We special case the powers of 2 upto 32, this should
%% catch most case. N.B. the last element in the segments tuple is
%% an extra element containing a default empty segment.
-spec expand_segs(segs(), seg()) -> segs().
%% 将当前的slot数量扩展翻两倍
expand_segs({B1}, Empty) ->
{ B1 , Empty };
expand_segs({B1, B2}, Empty) ->
{ B1 , B2 , Empty, Empty};
expand_segs({B1, B2, B3, B4}, Empty) ->
{ B1 , B2 , B3, B4, Empty, Empty, Empty, Empty};
expand_segs({B1, B2, B3, B4, B5, B6, B7, B8}, Empty) ->
{ B1 , B2 , B3, B4, B5, B6, B7, B8,
Empty , Empty , Empty, Empty, Empty, Empty, Empty, Empty};
expand_segs({B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14 , B15 , B16}, Empty) ->
{ B1 , B2 , B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15, B16 ,
Empty , Empty , Empty, Empty, Empty, Empty, Empty, Empty,
Empty , Empty , Empty, Empty, Empty, Empty, Empty, Empty};
expand_segs(Segs, Empty) ->
list_to_tuple(tuple_to_list( Segs )
++ lists:duplicate(tuple_size( Segs ), Empty )).
-spec contract_segs(segs()) -> segs().
%% 将当前的slot数量收缩一半
contract_segs({B1, _}) ->
{ B1 };
contract_segs({B1, B2, _, _}) ->
{ B1 , B2 };
contract_segs({B1, B2, B3, B4, _, _, _, _}) ->
{ B1 , B2 , B3, B4};
contract_segs({B1, B2, B3, B4, B5, B6, B7, B8, _, _, _, _, _, _, _, _}) ->
{ B1 , B2 , B3, B4, B5, B6, B7, B8};
contract_segs({B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14 , B15 , B16,
_ , _ , _, _, _, _, _, _, _, _, _, _, _, _, _, _}) ->
{ B1 , B2 , B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15, B16 };
contract_segs(Segs) ->
Ss = tuple_size(Segs ) div 2 ,
list_to_tuple(lists:sublist(tuple_to_list( Segs ), 1 , Ss)).