|
| 1 | +from __future__ import print_function |
| 2 | +import argparse |
| 3 | +import random |
| 4 | +import torch |
| 5 | +import torch.backends.cudnn as cudnn |
| 6 | +import torch.optim as optim |
| 7 | +import torch.utils.data |
| 8 | +from torch.autograd import Variable |
| 9 | +import numpy as np |
| 10 | +from warpctc_pytorch import CTCLoss |
| 11 | +import os |
| 12 | +import utils |
| 13 | +import dataset |
| 14 | + |
| 15 | +import models.crnn as crnn |
| 16 | + |
| 17 | +parser = argparse.ArgumentParser() |
| 18 | +parser.add_argument('--trainroot', required=True, help='path to dataset') |
| 19 | +parser.add_argument('--valroot', required=True, help='path to dataset') |
| 20 | +parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) |
| 21 | +parser.add_argument('--batchSize', type=int, default=64, help='input batch size') |
| 22 | +parser.add_argument('--imgH', type=int, default=64, help='the height / width of the input image to network') |
| 23 | +parser.add_argument('--nh', type=int, default=100, help='size of the lstm hidden state') |
| 24 | +parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for') |
| 25 | +parser.add_argument('--lr', type=float, default=1, help='learning rate for Critic, default=0.00005') |
| 26 | +parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') |
| 27 | +parser.add_argument('--cuda', action='store_true', help='enables cuda') |
| 28 | +parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') |
| 29 | +parser.add_argument('--crnn', default='', help="path to crnn (to continue training)") |
| 30 | +parser.add_argument('--alphabet', type=str, default='abcdefghijklmnopqrstuvwxyz0123456789') |
| 31 | +parser.add_argument('--Diters', type=int, default=5, help='number of D iters per each G iter') |
| 32 | +parser.add_argument('--experiment', default=None, help='Where to store samples and models') |
| 33 | +parser.add_argument('--displayInterval', type=int, default=500, help='Interval to be displayed') |
| 34 | +parser.add_argument('--n_test_disp', type=int, default=10, help='Number of samples to display when test') |
| 35 | +parser.add_argument('--valInterval', type=int, default=500, help='Interval to be displayed') |
| 36 | +parser.add_argument('--saveInterval', type=int, default=500, help='Interval to be displayed') |
| 37 | +parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)') |
| 38 | +parser.add_argument('--adadelta', action='store_true', help='Whether to use adadelta (default is rmsprop)') |
| 39 | +parser.add_argument('--keep_ratio', action='store_true', help='whether to keep ratio for image resize') |
| 40 | +parser.add_argument('--random_sample', action='store_true', help='whether to sample the dataset with random sampler') |
| 41 | +opt = parser.parse_args() |
| 42 | +print(opt) |
| 43 | + |
| 44 | +if opt.experiment is None: |
| 45 | + opt.experiment = 'samples' |
| 46 | +os.system('mkdir {0}'.format(opt.experiment)) |
| 47 | + |
| 48 | +opt.manualSeed = random.randint(1, 10000) # fix seed |
| 49 | +print("Random Seed: ", opt.manualSeed) |
| 50 | +random.seed(opt.manualSeed) |
| 51 | +np.random.seed(opt.manualSeed) |
| 52 | +torch.manual_seed(opt.manualSeed) |
| 53 | + |
| 54 | +cudnn.benchmark = True |
| 55 | + |
| 56 | +if torch.cuda.is_available() and not opt.cuda: |
| 57 | + print("WARNING: You have a CUDA device, so you should probably run with --cuda") |
| 58 | + |
| 59 | +train_dataset = dataset.lmdbDataset(root=opt.trainroot) |
| 60 | +assert train_dataset |
| 61 | +if not opt.random_sample: |
| 62 | + sampler = dataset.randomSequentialSampler(train_dataset, opt.batchSize) |
| 63 | +else: |
| 64 | + sampler = None |
| 65 | +train_loader = torch.utils.data.DataLoader( |
| 66 | + train_dataset, batch_size=opt.batchSize, |
| 67 | + shuffle=True, sampler=sampler, |
| 68 | + num_workers=int(opt.workers), |
| 69 | + collate_fn=dataset.alignCollate(imgH=opt.imgH, |
| 70 | + keep_ratio=opt.keep_ratio)) |
| 71 | +test_dataset = dataset.lmdbDataset(root=opt.valroot, transform=dataset.resizeNormalize((128, 32))) |
| 72 | + |
| 73 | +ngpu = int(opt.ngpu) |
| 74 | +nh = int(opt.nh) |
| 75 | +alphabet = opt.alphabet |
| 76 | +nclass = len(alphabet) + 1 |
| 77 | +nc = 1 |
| 78 | + |
| 79 | +converter = utils.strLabelConverter(alphabet) |
| 80 | +criterion = CTCLoss() |
| 81 | + |
| 82 | + |
| 83 | +# custom weights initialization called on crnn |
| 84 | +def weights_init(m): |
| 85 | + classname = m.__class__.__name__ |
| 86 | + if classname.find('Conv') != -1: |
| 87 | + m.weight.data.normal_(0.0, 0.02) |
| 88 | + elif classname.find('BatchNorm') != -1: |
| 89 | + m.weight.data.normal_(1.0, 0.02) |
| 90 | + m.bias.data.fill_(0) |
| 91 | + |
| 92 | +crnn = crnn.CRNN(opt.imgH, nc, nclass, nh, ngpu) |
| 93 | +crnn.apply(weights_init) |
| 94 | +if opt.crnn != '': |
| 95 | + print('loading pretrained model from %s' % opt.crnn) |
| 96 | + crnn.load_state_dict(torch.load(opt.crnn)) |
| 97 | +print(crnn) |
| 98 | + |
| 99 | +image = torch.FloatTensor(opt.batchSize, 3, opt.imgH, opt.imgH) |
| 100 | +text = torch.IntTensor(opt.batchSize * 5) |
| 101 | +length = torch.IntTensor(opt.batchSize) |
| 102 | + |
| 103 | +if opt.cuda: |
| 104 | + crnn.cuda() |
| 105 | + image = image.cuda() |
| 106 | + criterion = criterion.cuda() |
| 107 | + |
| 108 | +image = Variable(image) |
| 109 | +text = Variable(text) |
| 110 | +length = Variable(length) |
| 111 | + |
| 112 | +# loss averager |
| 113 | +loss_avg = utils.averager() |
| 114 | + |
| 115 | +# setup optimizer |
| 116 | +if opt.adam: |
| 117 | + optimizer = optim.Adam(crnn.parameters(), lr=opt.lrD, betas=(opt.beta1, 0.999)) |
| 118 | +elif opt.adadelta: |
| 119 | + optimizer = optim.Adadelta(crnn.parameters(), lr=opt.lrD) |
| 120 | +else: |
| 121 | + optimizer = optim.RMSprop(crnn.parameters(), lr=opt.lrD) |
| 122 | + |
| 123 | + |
| 124 | +def val(net, dataset, criterion, max_iter=100): |
| 125 | + print('Start val') |
| 126 | + |
| 127 | + for p in crnn.parameters(): |
| 128 | + p.requires_grad = False |
| 129 | + |
| 130 | + net.eval() |
| 131 | + data_loader = torch.utils.data.DataLoader( |
| 132 | + dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers)) |
| 133 | + val_iter = iter(data_loader) |
| 134 | + |
| 135 | + i = 0 |
| 136 | + n_correct = 0 |
| 137 | + loss_avg = utils.averager() |
| 138 | + |
| 139 | + for i in range(max_iter): |
| 140 | + data = val_iter.next() |
| 141 | + i += 1 |
| 142 | + cpu_images, cpu_texts = data |
| 143 | + batch_size = cpu_images.size(0) |
| 144 | + utils.loadData(image, cpu_images) |
| 145 | + t, l = converter.encode(cpu_texts) |
| 146 | + utils.loadData(text, t) |
| 147 | + utils.loadData(length, l) |
| 148 | + |
| 149 | + preds = crnn(image) |
| 150 | + preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size)) |
| 151 | + cost = criterion(preds, text, preds_size, length) / batch_size |
| 152 | + loss_avg.add(cost) |
| 153 | + |
| 154 | + _, preds = preds.max(2) |
| 155 | + preds = preds.squeeze(2) |
| 156 | + preds = preds.transpose(1, 0).contiguous().view(-1) |
| 157 | + sim_preds = converter.decode(preds.data, preds_size.data, raw=False) |
| 158 | + for pred, target in zip(sim_preds, cpu_texts): |
| 159 | + if pred == target.lower(): |
| 160 | + n_correct += 1 |
| 161 | + |
| 162 | + raw_preds = converter.decode(preds.data, preds_size.data, raw=True) |
| 163 | + for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts): |
| 164 | + print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt)) |
| 165 | + |
| 166 | + accuracy = n_correct / float(max_iter * opt.batchSize) |
| 167 | + print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy)) |
| 168 | + |
| 169 | + |
| 170 | +def trainBatch(net, criterion, optimizer): |
| 171 | + data = train_iter.next() |
| 172 | + cpu_images, cpu_texts = data |
| 173 | + batch_size = cpu_images.size(0) |
| 174 | + utils.loadData(image, cpu_images) |
| 175 | + t, l = converter.encode(cpu_texts) |
| 176 | + utils.loadData(text, t) |
| 177 | + utils.loadData(length, l) |
| 178 | + |
| 179 | + preds = crnn(image) |
| 180 | + preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size)) |
| 181 | + cost = criterion(preds, text, preds_size, length) / batch_size |
| 182 | + crnn.zero_grad() |
| 183 | + cost.backward() |
| 184 | + optimizer.step() |
| 185 | + return cost |
| 186 | + |
| 187 | + |
| 188 | +for epoch in range(opt.niter): |
| 189 | + train_iter = iter(train_loader) |
| 190 | + i = 0 |
| 191 | + while i < len(train_loader): |
| 192 | + for p in crnn.parameters(): |
| 193 | + p.requires_grad = True |
| 194 | + crnn.train() |
| 195 | + |
| 196 | + cost = trainBatch(crnn, criterion, optimizer) |
| 197 | + loss_avg.add(cost) |
| 198 | + i += 1 |
| 199 | + |
| 200 | + if i % opt.displayInterval == 0: |
| 201 | + print('[%d/%d][%d/%d] Loss: %f' % (epoch, opt.niter, i, len(train_loader), loss_avg.val())) |
| 202 | + loss_avg.reset() |
| 203 | + |
| 204 | + if i % opt.valInterval == 0: |
| 205 | + val(crnn, test_dataset, criterion) |
| 206 | + |
| 207 | + # do checkpointing |
| 208 | + if i % opt.saveInterval == 0: |
| 209 | + torch.save(crnn.state_dict(), '{0}/netCRNN_{1}_{2}.pth'.format(opt.experiment, epoch, i)) |
0 commit comments