From b3f58d308607664b12b0755856e800757d2f64bc Mon Sep 17 00:00:00 2001 From: Huihuang Zheng Date: Wed, 29 Jul 2020 10:00:28 +0800 Subject: [PATCH] TracedLayer Error Message Enhancement (#25734) Enhance TracedLayer Error Message Note: this PR uses assert to check type somewhere and check_type somewhere, the reason is that the check_type skips checking when it is under dygraph mode. --- python/paddle/fluid/dygraph/jit.py | 44 ++++- .../unittests/test_imperative_ptb_rnn.py | 2 +- ..._imperative_transformer_sorted_gradient.py | 4 +- .../unittests/test_traced_layer_err_msg.py | 156 ++++++++++++++++++ 4 files changed, 197 insertions(+), 9 deletions(-) create mode 100644 python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py diff --git a/python/paddle/fluid/dygraph/jit.py b/python/paddle/fluid/dygraph/jit.py index 754a0b67fed925..531aa37cb1dee8 100644 --- a/python/paddle/fluid/dygraph/jit.py +++ b/python/paddle/fluid/dygraph/jit.py @@ -20,7 +20,8 @@ import warnings from paddle.fluid import core -from paddle.fluid.compiler import CompiledProgram +from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy +from paddle.fluid.data_feeder import check_type from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, FunctionSpec from paddle.fluid.dygraph.layers import Layer @@ -43,10 +44,13 @@ def create_program_from_desc(program_desc): def _extract_vars(inputs, result_list): if isinstance(inputs, Variable): result_list.append(inputs) - - if isinstance(inputs, (list, tuple)): + elif isinstance(inputs, (list, tuple)): for var in inputs: _extract_vars(var, result_list) + else: + raise TypeError( + "The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.". + format(type(inputs))) def extract_vars(inputs): @@ -1063,12 +1067,13 @@ def trace(layer, inputs): Args: layer (dygraph.Layer): the layer object to be traced. - inputs (list(Variable)): the input variables of the layer object. + inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of + the layer object. Returns: tuple: A tuple of 2 items, whose the first item is the output of - :code:`layer(*inputs)` , and the second item is the created - TracedLayer object. + :code:`layer(*inputs)` , and the second item is the created + TracedLayer object. Examples: .. code-block:: python: @@ -1100,6 +1105,10 @@ def forward(self, input): # save the static graph model for inference static_layer.save_inference_model(dirname='./saved_infer_model') """ + assert isinstance( + layer, Layer + ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format( + type(layer)) outs, prog, feed, fetch, parameters = _trace(layer, inputs) traced = TracedLayer(prog, parameters, feed, fetch) return outs, traced @@ -1149,6 +1158,14 @@ def forward(self, input): out_static_graph = static_layer([in_var]) """ assert self._compiled_program is None, "Cannot set strategy after run" + assert isinstance( + build_strategy, (type(None), BuildStrategy) + ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format( + type(build_strategy)) + assert isinstance( + exec_strategy, (type(None), ExecutionStrategy) + ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format( + type(exec_strategy)) self._build_strategy = build_strategy self._exec_strategy = exec_strategy @@ -1239,6 +1256,21 @@ def forward(self, input): fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars) print(fetch.shape) # (2, 10) """ + check_type(dirname, "dirname", str, + "fluid.dygraph.jit.TracedLayer.save_inference_model") + check_type(feed, "feed", (type(None), list), + "fluid.dygraph.jit.TracedLayer.save_inference_model") + if isinstance(feed, list): + for f in feed: + check_type(f, "each element of feed", int, + "fluid.dygraph.jit.TracedLayer.save_inference_model") + check_type(fetch, "fetch", (type(None), list), + "fluid.dygraph.jit.TracedLayer.save_inference_model") + if isinstance(fetch, list): + for f in fetch: + check_type(f, "each element of fetch", int, + "fluid.dygraph.jit.TracedLayer.save_inference_model") + from paddle.fluid.io import save_inference_model def get_feed_fetch(all_vars, partial_vars): diff --git a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py index c143d09d44f645..bd629f5f4a69a9 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py @@ -272,7 +272,7 @@ def ptb_rnn_cpu_float32(self, is_sparse): program = traced_layer.program traced_layer.save_inference_model( - './infe_imperative_ptb_rnn', feed=range(4)) + './infe_imperative_ptb_rnn', feed=list(range(4))) else: outs = ptb_model(x, y, init_hidden, init_cell) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py b/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py index 75e2cd452baaf4..29cc718f14ff98 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py @@ -1010,8 +1010,8 @@ def transformer_sort_gradient_float32(self, is_sparse): program = traced_layer.program traced_layer.save_inference_model( './infer_imperative_transformer', - feed=range(len(ins_static)), - fetch=range(len(outs_static))) + feed=list(range(len(ins_static))), + fetch=list(range(len(outs_static)))) else: outs = transformer(enc_inputs, dec_inputs, label, weights) diff --git a/python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py b/python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py new file mode 100644 index 00000000000000..48251d17d0a96f --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py @@ -0,0 +1,156 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import paddle.fluid as fluid +import six +import unittest + + +class SimpleFCLayer(fluid.dygraph.Layer): + def __init__(self, feature_size, batch_size, fc_size): + super(SimpleFCLayer, self).__init__() + self._linear = fluid.dygraph.Linear(feature_size, fc_size) + self._offset = fluid.dygraph.to_variable( + np.random.random((batch_size, fc_size)).astype('float32')) + + def forward(self, x): + fc = self._linear(x) + return fc + self._offset + + +class TestTracedLayerErrMsg(unittest.TestCase): + def setUp(self): + self.batch_size = 4 + self.feature_size = 3 + self.fc_size = 2 + self.layer = self._train_simple_net() + if six.PY2: + self.type_str = 'type' + else: + self.type_str = 'class' + + def test_trace_err(self): + with fluid.dygraph.guard(): + in_x = fluid.dygraph.to_variable( + np.random.random((self.batch_size, self.feature_size)).astype( + 'float32')) + + with self.assertRaises(AssertionError) as e: + dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace( + None, [in_x]) + self.assertEqual( + "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received <{} 'NoneType'>.". + format(self.type_str), str(e.exception)) + with self.assertRaises(TypeError) as e: + dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace( + self.layer, 3) + self.assertEqual( + "The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received <{} 'int'>.". + format(self.type_str, self.type_str), str(e.exception)) + with self.assertRaises(TypeError) as e: + dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace( + self.layer, [True, 1]) + self.assertEqual( + "The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received <{} 'bool'>.". + format(self.type_str), str(e.exception)) + + dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace( + self.layer, [in_x]) + + def test_set_strategy_err(self): + with fluid.dygraph.guard(): + in_x = fluid.dygraph.to_variable( + np.random.random((self.batch_size, self.feature_size)).astype( + 'float32')) + dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace( + self.layer, [in_x]) + + with self.assertRaises(AssertionError) as e: + traced_layer.set_strategy(1, fluid.ExecutionStrategy()) + self.assertEqual( + "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received <{} 'int'>.". + format(self.type_str), str(e.exception)) + + with self.assertRaises(AssertionError) as e: + traced_layer.set_strategy(fluid.BuildStrategy(), False) + self.assertEqual( + "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received <{} 'bool'>.". + format(self.type_str), str(e.exception)) + + traced_layer.set_strategy(build_strategy=fluid.BuildStrategy()) + traced_layer.set_strategy(exec_strategy=fluid.ExecutionStrategy()) + traced_layer.set_strategy(fluid.BuildStrategy(), + fluid.ExecutionStrategy()) + + def test_save_inference_model_err(self): + with fluid.dygraph.guard(): + in_x = fluid.dygraph.to_variable( + np.random.random((self.batch_size, self.feature_size)).astype( + 'float32')) + dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace( + self.layer, [in_x]) + + dirname = './traced_layer_err_msg' + with self.assertRaises(TypeError) as e: + traced_layer.save_inference_model([0]) + self.assertEqual( + "The type of 'dirname' in fluid.dygraph.jit.TracedLayer.save_inference_model must be <{} 'str'>, but received <{} 'list'>. ". + format(self.type_str, self.type_str), str(e.exception)) + with self.assertRaises(TypeError) as e: + traced_layer.save_inference_model(dirname, [0], [None]) + self.assertEqual( + "The type of 'each element of fetch' in fluid.dygraph.jit.TracedLayer.save_inference_model must be <{} 'int'>, but received <{} 'NoneType'>. ". + format(self.type_str, self.type_str), str(e.exception)) + with self.assertRaises(TypeError) as e: + traced_layer.save_inference_model(dirname, [0], False) + self.assertEqual( + "The type of 'fetch' in fluid.dygraph.jit.TracedLayer.save_inference_model must be (<{} 'NoneType'>, <{} 'list'>), but received <{} 'bool'>. ". + format(self.type_str, self.type_str, self.type_str), + str(e.exception)) + with self.assertRaises(TypeError) as e: + traced_layer.save_inference_model(dirname, [None], [0]) + self.assertEqual( + "The type of 'each element of feed' in fluid.dygraph.jit.TracedLayer.save_inference_model must be <{} 'int'>, but received <{} 'NoneType'>. ". + format(self.type_str, self.type_str), str(e.exception)) + with self.assertRaises(TypeError) as e: + traced_layer.save_inference_model(dirname, True, [0]) + self.assertEqual( + "The type of 'feed' in fluid.dygraph.jit.TracedLayer.save_inference_model must be (<{} 'NoneType'>, <{} 'list'>), but received <{} 'bool'>. ". + format(self.type_str, self.type_str, self.type_str), + str(e.exception)) + + traced_layer.save_inference_model(dirname) + + def _train_simple_net(self): + layer = None + with fluid.dygraph.guard(): + layer = SimpleFCLayer(self.feature_size, self.batch_size, + self.fc_size) + optimizer = fluid.optimizer.SGD(learning_rate=1e-3, + parameter_list=layer.parameters()) + + for i in range(5): + in_x = fluid.dygraph.to_variable( + np.random.random((self.batch_size, self.feature_size)) + .astype('float32')) + dygraph_out = layer(in_x) + loss = fluid.layers.reduce_mean(dygraph_out) + loss.backward() + optimizer.minimize(loss) + return layer + + +if __name__ == '__main__': + unittest.main()