-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtutorial.jl
284 lines (229 loc) · 8.6 KB
/
tutorial.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
### A Pluto.jl notebook ###
# v0.14.7
using Markdown
using InteractiveUtils
# ╔═╡ 1e540d75-0a9d-4bb2-85aa-02ea78f08766
using Parameters, Random, Distributions, Plots, StatsBase, PlutoUI, ColorSchemes, DataFrames, StatsPlots
# ╔═╡ 42a769f0-1bf8-11ec-2a76-e7cea7f2e77a
import PolyStab:randagent
# ╔═╡ 9fe6dd08-89c2-49c7-99ed-bf27e4a90242
md"##### Generating agents"
# ╔═╡ 111bd54b-d480-4c5e-9a92-aa6f38a2d074
md""" Generating a single agent:"""
# ╔═╡ ee0a9506-823f-449d-8bb9-7f864c8e73ae
"""
randagent(p, α, n, k; d)
-n: number of loci
-k: ploidy l
-α: allelic effect size
-p: starting allele frequency
"""
a = randagent(0.5, 0.1, 100, 2, d=1.)
# ╔═╡ 54ea2331-7430-48c6-b0b9-f82c4b80f3ff
a.loci
# ╔═╡ 1c163c4d-d8dd-49a4-a07a-372abf74ef21
import PolyStab:trait
# ╔═╡ 3f95bac8-5c98-472f-b53d-f5f2ebe2e113
trait(a)
# ╔═╡ 2e17fd8e-f360-421e-ba35-8921c9807c47
md""" It is also possible to generate an array of agents:"""
# ╔═╡ 4d4f91c4-116e-45bd-aca5-a4e728026159
import PolyStab:randagent_p
# ╔═╡ de22de55-116d-41fd-8865-a9a0ae5be0c9
"""
randagent_P(p, α, n, k, N; d)
-n: number of loci
-k: ploidy l
-α: allelic effect size
-p: starting allele frequency
-N: number of individuals
"""
b = randagent_p(0.5, 0.1, 100, [0.,1.,0.,0.], 10, d=1.)
# ╔═╡ 7c3af315-31b4-40bb-af86-8a105f427b7c
b
# ╔═╡ 5e0aaf09-4453-4aea-b0f9-5f14b16200f5
md"""#### Generating a single mixed-ploidy deme"""
# ╔═╡ 870aab66-3e7a-4b47-917d-190a72f8e2de
import PolyStab:MixedPloidyDeme
# ╔═╡ 5d5393dd-bebe-4275-992b-7477a5c7834b
"""
MixedPloidyDeme{A,T}
Single mixed-ploidy deme, most of the 'population
genetic' environment is implemented at this level (drift, selection,
mutation). OV: Viability matrix, a symmetric matrix that contains the viability
of offspring for each possible combination of gametes. Ug: Unreduced gamete
formation rate matrix, a matrix that contains the probability of unreduced gamete formation for each level of ploidy in the population.
- `K` : Carrying capacity
- `θ` : Environmental optimum
- `rm`: Growth rate per capita
- `Vs`: Variance of stabilizing selection
- `α` : Allelic effect size
- `μ` : Mutation rate
- `OV` : Offspring viability
- `UG` : Unreduced gamete probabilities
"""
d_p1 = MixedPloidyDeme(agents = randagent_p(0.5, 0.2, 200, [1., 0., 0., 0.],10), OV = [1. 0. 0. 0. ; 0. 1. 0. 0. ; 0. 0. 0. 0. ; 0. 0. 0. 0.], UG = [1. 0. 0. 0. ; 1. 0. 0. 0. ; 0. 0. 0. 0. ; 0. 1. 0. 0.], θ = 20., Vs = 0.1)
# ╔═╡ 6b866b78-80d7-43b1-a4c5-33f6c7908a03
d_p1
# ╔═╡ 1dc54ec2-f4d3-4237-8fb2-b331e0bf887f
d_p1.agents
# ╔═╡ 6e07be7d-8af6-4bf1-9591-f42ab3ea9db0
trait.(d_p1.agents)
# ╔═╡ a24f94e4-c012-4c82-ba4c-93484d0a7263
md"""#### Simulating a single mixed-ploidy deme"""
# ╔═╡ e2ced766-0032-4cb2-b73c-fd1a086e0950
import PolyStab:evolving_selectiondeme
# ╔═╡ 7ac2f20c-db6a-4927-a76b-d7ded656adbc
"""
evolving_selectiondeme(d::AbstractDeme, ngen)
Simulate a single deme with mixed ploidy, malthusian fitness and unreduced
gamete formation.
function evolving_selectiondeme(d::MixedPloidyDeme, ngen;
heterozygosities_p=heterozygosities_p, fit=malthusian_fitness, trait_mean = trait_mean, allelefreqs_p =
allelefreqs_p, pf = ploidy_freq, fta = f_trait_agents)
het = [heterozygosities_p(d)]
pop = [length(d)]
tm = [trait_mean(d)]
af = [allelefreqs_p(d)]
p2 = [ploidy_freq(d)[2]]
p3 = [ploidy_freq(d)[3]]
p4 = [ploidy_freq(d)[4]]
fta = [f_trait_agents(d)]
for n=1:ngen
d = mating_PnB_x(d)
d = mutate(d)
push!(het, heterozygosities_p(d))
push!(pop, length(d))
push!(tm, trait_mean(d))
push!(af, allelefreqs_p(d))
push!(p2, ploidy_freq(d)[2])
push!(p3, ploidy_freq(d)[3])
push!(p4, ploidy_freq(d)[4])
push!(fta, f_trait_agents(d))
end
(pop=pop, deme=d, p2=p2, p3=p3, p4=p4, ngen=ngen, het=het,tm=tm, af=af, fta=fta)
end
"""
# ╔═╡ bb6aa892-6ef1-480a-8a2e-be1c131c0d5b
evolving_selectiondeme(d_p1, 500)
# ╔═╡ f91908fb-8202-4087-9ee0-ed8207a41378
md""" ###### Components of the mating function"""
# ╔═╡ a50b4da8-39d5-4977-a1de-a8a172c0e6ac
"""
mating_PnB_x(d::MixedPloidyDeme{A})
Mating in a mixed ploidy deme with unreduced gamete formation and partner
choice weighted by malthusian fitness.
function mating_PnB_x(d::AbstractDeme{A}) where A
new_agents = A[]
fitnesses = exp.(malthusian_fitness(d))
for i=1:length(d)
B1 = d.agents[i]
noff = number_of_offspring(d, B1)
Bs = sample(d.agents, weights(fitnesses), noff)
offspring = filter(!ismock, map(B2->mate_p(B1, B2, d), Bs))
new_agents = vcat(new_agents, offspring)
end
d(new_agents)
end
"""
# ╔═╡ d6eeb3b0-fbce-4ed8-b32b-0adbae74019c
"""
malthusian_fitness(d::AbstractDeme)
Return the Malthusian fitness (density dependence and stabilizing selection) of each agent in a deme.
function malthusian_fitness(d::MixedPloidyDeme)
N = length(d)
fitnesses = Float64[]
for agent in d.agents
z = trait(agent)
f = d.rm*(1-(N/d.K))-((z-d.θ)^2)/(2*d.Vs)
push!(fitnesses, f)
end
fitnesses
end
"""
# ╔═╡ 3db37b1c-693b-4c34-9e18-b9126b0fe235
"""
number_of_offspring(d::AbstractDeme, a::Agent)
function number_of_offspring(d::MixedPloidyDeme, a::Agent)
logw = malthusian_fitness(d, a)
rand(Poisson(exp(logw)))
end
"""
# ╔═╡ 776a2d51-ca39-4368-9431-5a3ad8afe14d
"""
mate_p(a::Agent, b::Agent, d::AbstractDeme)
Mating in a mixed ploidy deme. Assumes that different cytotypes can be
compatible with a decrease in viability (cfr. OffspringViability matrix) (i.e.
when #individuals with different ploidy hybridize, they generate have a
probability p to generate no viable offspring). Selfing is allowed without
cost. This influences the dynamics by including hybrid offspring that can
compete for space (and affects the malthusian fitness/density dependence of
selection).
function mate_p(a::Agent, b::Agent, d::AbstractDeme)
#gamete formation
# XXX we should have recombinatoin *before* gamete formation ?!
ag = gametogenesis(recombination(a), d)
bg = gametogenesis(recombination(b), d)
#combine gametes and assign viability
via = viability(ag, bg, d)
# not sure if returning 0 is the best idea in terms of type stability
# perhaps you should return a mock-agent (for instance an agent with length
# zero genome) when there is no viable offspring
# if d is defined at agent level, how do we cope with it here?
return rand() < via ? Agent(loci=[ag.loci ; bg.loci], d=a.d) : 0
end
"""
# ╔═╡ 82e7cf93-ba18-483a-9880-4dd396416510
"""
recombination(a::Agent)
Free recombination between loci in a mixed ploidy population.
function recombination(a::Agent)
genome = similar(a.loci)
for i in 1:nloci(a)
genome[:,i] = shuffle(a.loci[:,i])
end
Agent(loci=genome, d=a.d)
end
gametogenesis(a::Agent, d::AbstractDeme)
Gamete formation in a mixed ploidy population (1n to 4n).
function gametogenesis(a::Agent, d::AbstractDeme)
num = sample(1:4, weights(d.UG[ploidy(a),:]))
idx = sample(1:ploidy(a), num, replace=false)
return Agent(a.loci[idx, :], a.d)
end
viability(a::Agent, b::Agent, d::deme)
After fusing of gametes, calculate the viability of resulting individual. For example the viability of
a triploid individual is by default set to 0, diploid and tetraploid individuals set to 1.
function viability(a::Agent, b::Agent, d::AbstractDeme)
return d.OV[ploidy(a), ploidy(b)]
end
"""
# ╔═╡ Cell order:
# ╠═1e540d75-0a9d-4bb2-85aa-02ea78f08766
# ╠═42a769f0-1bf8-11ec-2a76-e7cea7f2e77a
# ╟─9fe6dd08-89c2-49c7-99ed-bf27e4a90242
# ╟─111bd54b-d480-4c5e-9a92-aa6f38a2d074
# ╠═ee0a9506-823f-449d-8bb9-7f864c8e73ae
# ╠═54ea2331-7430-48c6-b0b9-f82c4b80f3ff
# ╠═1c163c4d-d8dd-49a4-a07a-372abf74ef21
# ╠═3f95bac8-5c98-472f-b53d-f5f2ebe2e113
# ╟─2e17fd8e-f360-421e-ba35-8921c9807c47
# ╠═4d4f91c4-116e-45bd-aca5-a4e728026159
# ╠═de22de55-116d-41fd-8865-a9a0ae5be0c9
# ╠═7c3af315-31b4-40bb-af86-8a105f427b7c
# ╟─5e0aaf09-4453-4aea-b0f9-5f14b16200f5
# ╠═870aab66-3e7a-4b47-917d-190a72f8e2de
# ╠═5d5393dd-bebe-4275-992b-7477a5c7834b
# ╠═6b866b78-80d7-43b1-a4c5-33f6c7908a03
# ╠═1dc54ec2-f4d3-4237-8fb2-b331e0bf887f
# ╠═6e07be7d-8af6-4bf1-9591-f42ab3ea9db0
# ╟─a24f94e4-c012-4c82-ba4c-93484d0a7263
# ╠═e2ced766-0032-4cb2-b73c-fd1a086e0950
# ╠═7ac2f20c-db6a-4927-a76b-d7ded656adbc
# ╠═bb6aa892-6ef1-480a-8a2e-be1c131c0d5b
# ╟─f91908fb-8202-4087-9ee0-ed8207a41378
# ╠═a50b4da8-39d5-4977-a1de-a8a172c0e6ac
# ╠═d6eeb3b0-fbce-4ed8-b32b-0adbae74019c
# ╠═3db37b1c-693b-4c34-9e18-b9126b0fe235
# ╠═776a2d51-ca39-4368-9431-5a3ad8afe14d
# ╠═82e7cf93-ba18-483a-9880-4dd396416510