Skip to content

Commit

Permalink
Merge pull request #38 from LuxDL/ap/basisv2
Browse files Browse the repository at this point in the history
Expand basis functions to operate on arbitrary dimensions
  • Loading branch information
avik-pal authored Jun 12, 2024
2 parents 39aed1e + 48e16d7 commit 3c4d1b3
Show file tree
Hide file tree
Showing 3 changed files with 101 additions and 17 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Boltz"
uuid = "4544d5e4-abc5-4dea-817f-29e4c205d9c8"
authors = ["Avik Pal <avikpal@mit.edu> and contributors"]
version = "0.3.7"
version = "0.3.8"

[deps]
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
Expand Down
82 changes: 66 additions & 16 deletions src/basis.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
module Basis

using ArgCheck: @argcheck
using ..Boltz: _unsqueeze1
using ChainRulesCore: ChainRulesCore, NoTangent
using ConcreteStructs: @concrete
using LuxDeviceUtils: get_device, LuxCPUDevice
using Markdown: @doc_str

const CRC = ChainRulesCore
Expand All @@ -11,63 +13,103 @@ const CRC = ChainRulesCore
@concrete struct GeneralBasisFunction{name}
f
n::Int
dim::Int
end

function Base.show(io::IO, basis::GeneralBasisFunction{name}) where {name}
print(io, "Basis.$(name)(order=$(basis.n))")
end

@inline function (basis::GeneralBasisFunction{name, F})(x::AbstractArray) where {name, F}
return basis.f.(1:(basis.n), _unsqueeze1(x))
@inline function (basis::GeneralBasisFunction{name, F})(x::AbstractArray,
grid::Union{AbstractRange, AbstractVector}=1:1:(basis.n)) where {name, F}
@argcheck length(grid) == basis.n
if basis.dim == 1 # Fast path where we don't need to materialize the range
return basis.f.(grid, _unsqueeze1(x))
end

@argcheck ndims(x) + 1 basis.dim
new_x_size = ntuple(
i -> i == basis.dim ? 1 : (i < basis.dim ? size(x, i) : size(x, i - 1)),
ndims(x) + 1)
x_new = reshape(x, new_x_size)
if grid isa AbstractRange
dev = get_device(x)
grid = dev isa LuxCPUDevice ? collect(grid) : dev(grid)
end
grid_shape = ntuple(i -> i == basis.dim ? basis.n : 1, ndims(x) + 1)
grid_new = reshape(grid, grid_shape)
return basis.f.(grid_new, x_new)
end

const DIM_KWARG_DOC = " - `dim::Int=1`: The dimension along which the basis functions are applied."

@doc doc"""
Chebyshev(n)
Chebyshev(n; dim::Int=1)
Constructs a Chebyshev basis of the form $[T_{0}(x), T_{1}(x), \dots, T_{n-1}(x)]$ where
$T_j(.)$ is the $j^{th}$ Chebyshev polynomial of the first kind.
## Arguments
- `n`: number of terms in the polynomial expansion.
## Keyword Arguments
$(DIM_KWARG_DOC)
"""
Chebyshev(n) = GeneralBasisFunction{:Chebyshev}(__chebyshev, n)
Chebyshev(n; dim::Int=1) = GeneralBasisFunction{:Chebyshev}(__chebyshev, n, dim)

@inline __chebyshev(i, x) = @fastmath cos(i * acos(x))

@doc doc"""
Sin(n)
Sin(n; dim::Int=1)
Constructs a sine basis of the form $[\sin(x), \sin(2x), \dots, \sin(nx)]$.
## Arguments
- `n`: number of terms in the sine expansion.
## Keyword Arguments
$(DIM_KWARG_DOC)
"""
Sin(n) = GeneralBasisFunction{:Sin}(@fastmath(sin∘*), n)
Sin(n; dim::Int=1) = GeneralBasisFunction{:Sin}(@fastmath(sin∘*), n, dim)

@doc doc"""
Cos(n)
Cos(n; dim::Int=1)
Constructs a cosine basis of the form $[\cos(x), \cos(2x), \dots, \cos(nx)]$.
## Arguments
- `n`: number of terms in the cosine expansion.
## Keyword Arguments
$(DIM_KWARG_DOC)
"""
Cos(n) = GeneralBasisFunction{:Cos}(@fastmath(cos∘*), n)
Cos(n; dim::Int=1) = GeneralBasisFunction{:Cos}(@fastmath(cos∘*), n, dim)

@doc doc"""
Fourier(n)
Fourier(n; dim=1)
Constructs a Fourier basis of the form
$F_j(x) = j is even ? cos((j÷2)x) : sin((j÷2)x)$ => $[F_0(x), F_1(x), \dots, F_n(x)]$.
$$F_j(x) = \begin{cases}
cos\left(\frac{j}{2}x\right) & \text{if } j \text{ is even} \\
sin\left(\frac{j}{2}x\right) & \text{if } j \text{ is odd}
\end{cases}$$
## Arguments
- `n`: number of terms in the Fourier expansion.
## Keyword Arguments
$(DIM_KWARG_DOC)
"""
Fourier(n) = GeneralBasisFunction{:Fourier}(__fourier, n)
Fourier(n; dim::Int=1) = GeneralBasisFunction{:Fourier}(__fourier, n, dim)

@inline @fastmath function __fourier(i, x::AbstractFloat)
s, c = sincos(i * x / 2)
Expand Down Expand Up @@ -96,16 +138,20 @@ end
end

@doc doc"""
Legendre(n)
Legendre(n; dim::Int=1)
Constructs a Legendre basis of the form $[P_{0}(x), P_{1}(x), \dots, P_{n-1}(x)]$ where
$P_j(.)$ is the $j^{th}$ Legendre polynomial.
## Arguments
- `n`: number of terms in the polynomial expansion.
## Keyword Arguments
$(DIM_KWARG_DOC)
"""
Legendre(n) = GeneralBasisFunction{:Legendre}(__legendre_poly, n)
Legendre(n; dim::Int=1) = GeneralBasisFunction{:Legendre}(__legendre_poly, n, dim)

## Source: https://github.com/ranocha/PolynomialBases.jl/blob/master/src/legendre.jl
@inline function __legendre_poly(i, x)
Expand All @@ -124,15 +170,19 @@ Legendre(n) = GeneralBasisFunction{:Legendre}(__legendre_poly, n)
end

@doc doc"""
Polynomial(n)
Polynomial(n; dim::Int=1)
Constructs a Polynomial basis of the form $[1, x, \dots, x^(n-1)]$.
Constructs a Polynomial basis of the form $[1, x, \dots, x^{(n-1)}]$.
## Arguments
- `n`: number of terms in the polynomial expansion.
## Keyword Arguments
$(DIM_KWARG_DOC)
"""
Polynomial(n) = GeneralBasisFunction{:Polynomial}(__polynomial, n)
Polynomial(n; dim::Int=1) = GeneralBasisFunction{:Polynomial}(__polynomial, n, dim)

@inline __polynomial(i, x) = x^(i - 1)

Expand Down
34 changes: 34 additions & 0 deletions test/layer_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -108,3 +108,37 @@ end
end
end
end

@testitem "Basis Functions" setup=[SharedTestSetup] tags=[:layers] begin
@testset "$(mode)" for (mode, aType, dev, ongpu) in MODES
@testset "$(basis)" for basis in (Basis.Chebyshev, Basis.Sin, Basis.Cos,
Basis.Fourier, Basis.Legendre, Basis.Polynomial)
x = tanh.(randn(Float32, 2, 4)) |> aType
grid = collect(1:3) |> aType

fn = basis(3)
@test size(fn(x)) == (3, 2, 4)
@jet fn(x)
@test size(fn(x, grid)) == (3, 2, 4)
@jet fn(x, grid)

fn = basis(3; dim=2)
@test size(fn(x)) == (2, 3, 4)
@jet fn(x)
@test size(fn(x, grid)) == (2, 3, 4)
@jet fn(x, grid)

fn = basis(3; dim=3)
@test size(fn(x)) == (2, 4, 3)
@jet fn(x)
@test size(fn(x, grid)) == (2, 4, 3)
@jet fn(x, grid)

fn = basis(3; dim=4)
@test_throws ArgumentError fn(x)

grid = 1:5 |> aType
@test_throws ArgumentError fn(x, grid)
end
end
end

2 comments on commit 3c4d1b3

@avik-pal
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/108775

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.3.8 -m "<description of version>" 3c4d1b3dc4197111d8eceddbb8c15bbc7ebfc5cd
git push origin v0.3.8

Please sign in to comment.