Testing real time weather and bike APIs and online learning with Plotly Dash You need api keys from JCDecaux and OpenWeatherAPI to run the project. To run in docker:
- launch docker
- Add your API keys in
src/settings/api_keys.yml
- run :
docker secret create api_keys src/settings/api_keys.yml
docker-compose build
docker-compose up
Run for dev:
make create_environments
Activate the environment
Install packages
make requirements
If you are developing :
make requirements-dev
To run the dash app: export API keys as environment variables :
export DECAUX_API="yourbikeapikey"
export WEATHER_API="yourweatherapikey"
dash run src/application/dashapp.py
├── docker-compose.yml <- Dash + Redis services docker compose
├── Dockerfile <- Dash application docker file
├── Makefile <- Makefile with commands like `make data` or `make train`
├── LICENSE
├── README.md
├── data <- data (essentially empty because we use online learning)
├── docs <- project documentation
├── requirements-dev.txt <- python developpement modules requirements (tests, linting, etc)
├── requirements.txt <- python packages requirements
├── mypy.ini <- mypy static type checking settings
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── __init__.py
│ ├── application <- Scripts to create a Plotly Dash app to present results
│ │ ├── dashapp.py
│ │ └── data_for_dash.py
│ ├── data <- Scripts to download or generate data (calls APIs)
│ │ ├── __init__.py
│ │ └── collect_data.py
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ ├── __init__.py
│ │ └── build_features.py
│ ├── models <- Scripts for online learning (train and predict at the same time)
│ │ ├── __init__.py
│ │ └── online_model.py
│ └── settings <- settings folder that manages changes between dev/staging(CI)/ and prod settings
│ ├── __init__.py
│ ├── api_keys.template
│ └── conf.py
├── tests
│ ├── __init__.py
│ ├── conftest.py
│ └── unit_tests
│ ├── application
│ ├── data
│ ├── features
│ ├── models
│ └── settings
└── tox.ini <- tox file with settings for running tox; see tox.readthedocs.io
Project based on the cookiecutter data science project template. #cookiecutterdatascience