forked from yang-song/score_sde_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlikelihood.py
113 lines (95 loc) · 4.6 KB
/
likelihood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
# pytype: skip-file
"""Various sampling methods."""
import torch
import numpy as np
from scipy import integrate
from models import utils as mutils
def get_div_fn(fn):
"""Create the divergence function of `fn` using the Hutchinson-Skilling trace estimator."""
def div_fn(x, t, eps):
with torch.enable_grad():
x.requires_grad_(True)
fn_eps = torch.sum(fn(x, t) * eps)
grad_fn_eps = torch.autograd.grad(fn_eps, x)[0]
x.requires_grad_(False)
return torch.sum(grad_fn_eps * eps, dim=tuple(range(1, len(x.shape))))
return div_fn
def get_likelihood_fn(sde, inverse_scaler, hutchinson_type='Rademacher',
rtol=1e-5, atol=1e-5, method='RK45', eps=1e-5):
"""Create a function to compute the unbiased log-likelihood estimate of a given data point.
Args:
sde: A `sde_lib.SDE` object that represents the forward SDE.
inverse_scaler: The inverse data normalizer.
hutchinson_type: "Rademacher" or "Gaussian". The type of noise for Hutchinson-Skilling trace estimator.
rtol: A `float` number. The relative tolerance level of the black-box ODE solver.
atol: A `float` number. The absolute tolerance level of the black-box ODE solver.
method: A `str`. The algorithm for the black-box ODE solver.
See documentation for `scipy.integrate.solve_ivp`.
eps: A `float` number. The probability flow ODE is integrated to `eps` for numerical stability.
Returns:
A function that a batch of data points and returns the log-likelihoods in bits/dim,
the latent code, and the number of function evaluations cost by computation.
"""
def drift_fn(model, x, t):
"""The drift function of the reverse-time SDE."""
score_fn = mutils.get_score_fn(sde, model, train=False, continuous=True)
# Probability flow ODE is a special case of Reverse SDE
rsde = sde.reverse(score_fn, probability_flow=True)
return rsde.sde(x, t)[0]
def div_fn(model, x, t, noise):
return get_div_fn(lambda xx, tt: drift_fn(model, xx, tt))(x, t, noise)
def likelihood_fn(model, data):
"""Compute an unbiased estimate to the log-likelihood in bits/dim.
Args:
model: A score model.
data: A PyTorch tensor.
Returns:
bpd: A PyTorch tensor of shape [batch size]. The log-likelihoods on `data` in bits/dim.
z: A PyTorch tensor of the same shape as `data`. The latent representation of `data` under the
probability flow ODE.
nfe: An integer. The number of function evaluations used for running the black-box ODE solver.
"""
with torch.no_grad():
shape = data.shape
if hutchinson_type == 'Gaussian':
epsilon = torch.randn_like(data)
elif hutchinson_type == 'Rademacher':
epsilon = torch.randint_like(data, low=0, high=2).float() * 2 - 1.
else:
raise NotImplementedError(f"Hutchinson type {hutchinson_type} unknown.")
def ode_func(t, x):
sample = mutils.from_flattened_numpy(x[:-shape[0]], shape).to(data.device).type(torch.float32)
vec_t = torch.ones(sample.shape[0], device=sample.device) * t
drift = mutils.to_flattened_numpy(drift_fn(model, sample, vec_t))
logp_grad = mutils.to_flattened_numpy(div_fn(model, sample, vec_t, epsilon))
return np.concatenate([drift, logp_grad], axis=0)
init = np.concatenate([mutils.to_flattened_numpy(data), np.zeros((shape[0],))], axis=0)
solution = integrate.solve_ivp(ode_func, (eps, sde.T), init, rtol=rtol, atol=atol, method=method)
nfe = solution.nfev
zp = solution.y[:, -1]
z = mutils.from_flattened_numpy(zp[:-shape[0]], shape).to(data.device).type(torch.float32)
delta_logp = mutils.from_flattened_numpy(zp[-shape[0]:], (shape[0],)).to(data.device).type(torch.float32)
prior_logp = sde.prior_logp(z)
bpd = -(prior_logp + delta_logp) / np.log(2)
N = np.prod(shape[1:])
bpd = bpd / N
# A hack to convert log-likelihoods to bits/dim
offset = 7. - inverse_scaler(-1.)
bpd = bpd + offset
return bpd, z, nfe
return likelihood_fn