diff --git a/convert.py b/convert.py index 265c41fa04b18..de6c39c67672b 100644 --- a/convert.py +++ b/convert.py @@ -130,6 +130,14 @@ def make_tensors_list() -> List[str]: TENSORS_SET = set(TENSORS_LIST) +def find_n_mult(n_ff: int, n_embd: int) -> int: + # hardcoded magic range + for n_mult in range(256, 1, -1): + calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult + if calc_ff == n_ff: + return n_mult + return 1 + @dataclass class Params: n_vocab: int @@ -137,21 +145,61 @@ class Params: n_mult: int n_head: int n_layer: int - file_type: GGMLFileType @staticmethod - def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params': - n_vocab, n_embd = model["tok_embeddings.weight"].shape + def guessed(model: 'LazyModel') -> 'Params': + # try transformer naming first + n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape + + # try transformer naming first + if "model.layers.0.self_attn.q_proj.weight" in model: + n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) + else: + n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) + + n_head=n_embd // 128 # guessed return Params( n_vocab=n_vocab, n_embd=n_embd, n_mult=256, - n_head=n_embd // 128, - n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model), - file_type=file_type, + n_head=n_head, + n_layer=n_layer, ) + @staticmethod + def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params': + config = json.load(open(config_path)) + + n_vocab = config["vocab_size"]; + n_embd = config["hidden_size"]; + n_head = config["num_attention_heads"]; + n_layer = config["num_hidden_layers"]; + n_ff = config["intermediate_size"]; + + n_mult = find_n_mult(n_ff, n_embd); + + return Params( + n_vocab=n_vocab, + n_embd=n_embd, + n_mult=n_mult, + n_head=n_head, + n_layer=n_layer, + ) + + @staticmethod + def load(model_plus: 'ModelPlus') -> 'Params': + orig_config_path = model_plus.paths[0].parent / "params.json" + hf_transformer_config_path = model_plus.paths[0].parent / "config.json" + + if hf_transformer_config_path.exists(): + params = Params.loadHFTransformerJson(model_plus.model, hf_transformer_config_path) + else: + params = Params.guessed(model_plus.model) + + print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}') + return params + class SentencePieceVocab: def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None: @@ -595,18 +643,17 @@ def load() -> Tensor: return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) -def convert_transformers_to_orig(model: LazyModel) -> LazyModel: +def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel: out: LazyModel = {} out["tok_embeddings.weight"] = model["model.embed_tokens.weight"] out["norm.weight"] = model["model.norm.weight"] out["output.weight"] = model["lm_head.weight"] - n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128 for i in itertools.count(): if f"model.layers.{i}.self_attn.q_proj.weight" not in model: break - out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head) - out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head) + out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head) + out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head) out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"] @@ -920,7 +967,7 @@ class OutputFile: def __init__(self, fname_out: Path) -> None: self.fout = open(fname_out, "wb") - def write_file_header(self, params: Params) -> None: + def write_file_header(self, params: Params, file_type: GGMLFileType) -> None: self.fout.write(b"ggjt"[::-1]) # magic values = [ 1, # file version @@ -930,7 +977,7 @@ def write_file_header(self, params: Params) -> None: params.n_head, params.n_layer, params.n_embd // params.n_head, # rot (obsolete) - params.file_type.value, + file_type.value, ] self.fout.write(struct.pack("i" * len(values), *values)) @@ -958,10 +1005,10 @@ def write_vocab_only(fname_out: Path, vocab: Vocab) -> None: of.fout.close() @staticmethod - def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None: + def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None: check_vocab_size(params, vocab) of = OutputFile(fname_out) - of.write_file_header(params) + of.write_file_header(params, file_type) print("Writing vocab...") of.write_vocab(vocab) @@ -997,11 +1044,11 @@ def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFi raise Exception(f"Unexpected combination of types: {name_to_type}") -def do_necessary_conversions(model: LazyModel) -> LazyModel: +def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel: model = handle_quantization(model) if "lm_head.weight" in model: - model = convert_transformers_to_orig(model) + model = convert_transformers_to_orig(model, params) model = filter_and_sort_tensors(model) return model @@ -1107,14 +1154,14 @@ def load_vocab(path: Path) -> SentencePieceVocab: return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None) -def default_outfile(model_paths: List[Path], params: Params) -> Path: +def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path: namestr = { GGMLFileType.AllF32: "f32", GGMLFileType.MostlyF16: "f16", GGMLFileType.MostlyQ4_0: "q4_0", GGMLFileType.MostlyQ4_1: "q4_1", GGMLFileType.PerLayerIsQ4_1: "q4_1", - }[params.file_type] + }[file_type] ret = model_paths[0].parent / f"ggml-model-{namestr}.bin" if ret in model_paths: sys.stderr.write( @@ -1164,13 +1211,13 @@ def main(args_in: Optional[List[str]] = None) -> None: else: vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent vocab = load_vocab(vocab_dir) + params = Params.load(model_plus) model = model_plus.model - model = do_necessary_conversions(model) + model = do_necessary_conversions(model, params) output_type = pick_output_type(model, args.outtype) model = convert_to_output_type(model, output_type) - params = Params.guessed(model, output_type) - outfile = args.outfile or default_outfile(model_plus.paths, params) - OutputFile.write_all(outfile, params, model, vocab) + outfile = args.outfile or default_outfile(model_plus.paths, output_type) + OutputFile.write_all(outfile, params, output_type, model, vocab) print(f"Wrote {outfile}")