diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 0a43fb5dad0f2..3f111565ae444 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -162,7 +162,7 @@ typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_ typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc); typedef void (*load_tiles_cuda_t)( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row); + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row); typedef float (*vec_dot_q_mul_mat_cuda_t)( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k); @@ -1397,8 +1397,8 @@ static __device__ __forceinline__ float vec_dot_q4_0_q8_1( static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ half2 tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_0)]; + __shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; + __shared__ half2 tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_0) + GGML_CUDA_MMQ_Y/QI4_0]; *x_ql = tile_x_qs; *x_dm = tile_x_d; @@ -1406,26 +1406,61 @@ static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q4_0( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { + + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI4_0; const int kqsx = k % QI4_0; - const block_q4_0 * bx = ((block_q4_0 *) vx) + i*blocks_per_row + kbx; + const block_q4_0 * bx0 = (block_q4_0 *) vx; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; + + const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx; + + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); + x_dm[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx].x = bxi->d; + } + +// const int blocks_per_tile_x_row = WARP_SIZE / QI4_0; +// const int kbxd = k % blocks_per_tile_x_row; + +// #pragma unroll +// for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI4_0) { +// const int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row; + +// if (i >= GGML_CUDA_MMQ_Y) { +// return; +// } + +// const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bx->qs, kqsx); - x_dm[i * (WARP_SIZE / QI4_0) + kbx].x = bx->d; +// x_dm[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd].x = bxi->d; +// } } static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); + const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); return vec_dot_q4_0_q8_1_impl( x_ql[i * (WARP_SIZE + 1) + k], y_qs[j * (2*WARP_SIZE) + kyqs], y_qs[j * (2*WARP_SIZE) + kyqs + (QI8_1/2)], - x_dm[i * (WARP_SIZE/QI4_0) + k/QI4_0].x, y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); + x_dm[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0].x, y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); } #define VDR_q4_1_q8_1 1 @@ -1471,8 +1506,8 @@ static __device__ __forceinline__ float vec_dot_q4_1_q8_1( static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_1)]; + __shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE) + + GGML_CUDA_MMQ_Y]; + __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_1) + GGML_CUDA_MMQ_Y/QI4_1]; *x_ql = tile_x_qs; *x_dm = tile_x_dm; @@ -1480,26 +1515,56 @@ static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q4_1( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { + + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI4_1; const int kqsx = k % QI4_1; - const block_q4_1 * bx = ((block_q4_1 *) vx) + i*blocks_per_row + kbx; + const block_q4_1 * bx0 = (block_q4_1 *) vx; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; + + const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx; + + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI4_1; + const int kbxd = k % blocks_per_tile_x_row; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI4_1) { + const int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row; + + const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bx->qs, kqsx); - x_dm[i * (WARP_SIZE / QI4_1) + kbx] = bx->dm; + x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm; + } } static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); + const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); return vec_dot_q4_1_q8_1_impl( x_ql[i * (WARP_SIZE + 1) + k], y_qs[j * (2*WARP_SIZE) + kyqs], y_qs[j * (2*WARP_SIZE) + kyqs + (QI8_1/2)], - x_dm[i * (WARP_SIZE/QI4_1) + k/QI4_1], y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); + x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1], y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); } #define VDR_q5_0_q8_1 1 @@ -1543,9 +1608,9 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1( static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_0)]; - __shared__ half2 tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_0)]; + __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; + __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_0) + GGML_CUDA_MMQ_Y/QI5_0]; + __shared__ half2 tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_0) + GGML_CUDA_MMQ_Y/QI5_0]; *x_ql = tile_x_ql; *x_qh = tile_x_qh; @@ -1554,24 +1619,54 @@ static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q5_0( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { + + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI5_0; const int kqsx = k % QI5_0; - const block_q5_0 * bx = ((block_q5_0 *) vx) + i*blocks_per_row + kbx; + const block_q5_0 * bx0 = (block_q5_0 *) vx; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; + + const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx; + + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI5_0; + const int kbxd = k % blocks_per_tile_x_row; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bx->qs, kqsx); - x_qh[i * (WARP_SIZE / QI5_0) + kbx] = get_int_from_uint8(bx->qh, 0); - x_dm[i * (WARP_SIZE / QI5_0) + kbx].x = bx->d; +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI5_0) { + const int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row; + + const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd; + + x_qh[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = get_int_from_uint8(bxi->qh, 0); + x_dm[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd].x = bxi->d; + } } static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); + const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); - const int index_bx = i * (WARP_SIZE/QI5_0) + k/QI5_0; + const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0; return vec_dot_q5_0_q8_1_impl( x_ql[i * (WARP_SIZE + 1) + k], x_qh[index_bx] >> (4 * (k % QI5_0)), y_qs[j * (2*WARP_SIZE) + kyqs], @@ -1629,9 +1724,9 @@ static __device__ __forceinline__ float vec_dot_q5_1_q8_1( static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_1)]; - __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_1)]; + __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE ) + GGML_CUDA_MMQ_Y]; + __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_1) + GGML_CUDA_MMQ_Y/QI5_1]; + __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_1) + GGML_CUDA_MMQ_Y/QI5_1]; *x_ql = tile_x_ql; *x_qh = tile_x_qh; @@ -1640,24 +1735,54 @@ static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q5_1( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { + + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI5_1; const int kqsx = k % QI5_1; - const block_q5_1 * bx = ((block_q5_1 *) vx) + i*blocks_per_row + kbx; + const block_q5_1 * bx0 = (block_q5_1 *) vx; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bx->qs, kqsx); - x_qh[i * (WARP_SIZE / QI5_1) + kbx] = get_int_from_uint8(bx->qh, 0); - x_dm[i * (WARP_SIZE / QI5_1) + kbx] = bx->dm; + const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx; + + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI5_1; + const int kbxd = k % blocks_per_tile_x_row; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI5_1) { + const int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row; + + const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd; + + x_qh[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = get_int_from_uint8_aligned(bxi->qh, 0); + x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm; + } } static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); + const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); - const int index_bx = i * (WARP_SIZE/QI5_0) + k/QI5_0; + const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1; return vec_dot_q5_1_q8_1_impl( x_ql[i * (WARP_SIZE + 1) + k], x_qh[index_bx] >> (4 * (k % QI5_1)), y_qs[j * (2*WARP_SIZE) + kyqs], @@ -1692,8 +1817,8 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1( static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ half2 tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI8_0)]; + __shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; + __shared__ half2 tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI8_0) + GGML_CUDA_MMQ_Y/QI8_0]; *x_ql = tile_x_qs; *x_dm = tile_x_d; @@ -1701,24 +1826,61 @@ static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q8_0( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { + + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI8_0; const int kqsx = k % QI8_0; - const block_q8_0 * bx = ((block_q8_0 *) vx) + i*blocks_per_row + kbx; + const block_q8_0 * bx0 = (block_q8_0 *) vx; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; + + const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx; + + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx); + x_dm[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbx].x = bxi->d; + } + +// const int blocks_per_tile_x_row = WARP_SIZE / QI8_0; +// const int kbxd = k % blocks_per_tile_x_row; + +// #pragma unroll +// for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI8_0) { +// const int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bx->qs, kqsx); - x_dm[i * (WARP_SIZE / QI8_0) + kbx].x = bx->d; +// #if GGML_CUDA_MMQ_Y < 64 +// if (i >= GGML_CUDA_MMQ_Y) { +// return; +// } +// #endif // GGML_CUDA_MMQ_Y < 64 + +// const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd; + +// x_dm[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd].x = bxi->d; +// } } static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); + return vec_dot_q8_0_q8_1_impl( x_ql[i * (WARP_SIZE + 1) + k], y_qs[j*WARP_SIZE + k], - x_dm[i * (WARP_SIZE/QI8_0) + k/QI8_0].x, y_ds[j * (WARP_SIZE/QI8_1) + k/QI8_1]); + x_dm[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0].x, y_ds[j * (WARP_SIZE/QI8_1) + k/QI8_1]); } #define VDR_q2_K_q8_1 1 @@ -1776,9 +1938,9 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1( static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE / QI2_K)]; - __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE / 4)]; + __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; + __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI2_K) + GGML_CUDA_MMQ_Y/QI2_K]; + __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/4) + GGML_CUDA_MMQ_Y/4]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; @@ -1787,25 +1949,59 @@ static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q2_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { + + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI2_K; const int kqsx = k % QI2_K; - const block_q2_K * bx = ((block_q2_K *) vx) + i*blocks_per_row + kbx; + const block_q2_K * bx0 = (block_q2_K *) vx; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bx->qs, kqsx); - x_dm[i * (WARP_SIZE / QI2_K) + kbx] = bx->dm; - x_sc[i * (WARP_SIZE / 4) + k/4] = get_int_from_uint8_aligned(bx->scales, kqsx / 4); +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; + + const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx; + + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI2_K; + const int kbxd = k % blocks_per_tile_x_row; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI2_K) { + const int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y; + + const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd; + + x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm; + } + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 4) { + const int i = i0 + i_offset * 4 + k / (WARP_SIZE/4); + + const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4); + + x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4)); + } } static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { - __builtin_assume(i < GGML_CUDA_MMQ_Y); - __builtin_assume(j < WARP_SIZE); - __builtin_assume(k < WARP_SIZE); + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI2_K; const int kqsx = k % QI2_K; @@ -1813,7 +2009,7 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat( const int bq8_offset = QR2_K * (kqsx / QI8_1); const int scale_offset = kqsx - kqsx % QI8_1 + (kqsx % QI8_1) / (QI8_1/2); - const uint8_t * scales = ((uint8_t *) (x_sc + i * (WARP_SIZE/4))) + kbx*16 + scale_offset; + const uint8_t * scales = ((uint8_t *) (x_sc + i * (WARP_SIZE/4) + i / 4)) + kbx*16 + scale_offset; int u[QR2_K]; float d8[QR2_K]; @@ -1824,7 +2020,7 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat( d8[l] = y_ds[y_qs_index / QI8_1].x; } - return vec_dot_q2_K_q8_1_impl(x_ql[i * (WARP_SIZE + 1) + k], u, scales, x_dm[i * (WARP_SIZE/QI2_K) + kbx], d8); + return vec_dot_q2_K_q8_1_impl(x_ql[i * (WARP_SIZE + 1) + k], u, scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], d8); } #define VDR_q3_K_q8_1 1 @@ -1892,10 +2088,10 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1( static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE / QI2_K)]; - __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE / 2)]; - __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE / 4)]; + __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; + __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI3_K) + GGML_CUDA_MMQ_Y/QI3_K]; + __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/2) + GGML_CUDA_MMQ_Y/2]; + __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/4) + GGML_CUDA_MMQ_Y/4]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; @@ -1905,33 +2101,79 @@ static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q3_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { + + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI3_K; const int kqsx = k % QI3_K; - const block_q3_K * bx = ((block_q3_K *) vx) + i*blocks_per_row + kbx; + const block_q3_K * bx0 = (block_q3_K *) vx; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bx->qs, kqsx); - x_dm[i * (WARP_SIZE / QI3_K) + kbx].x = bx->d; - x_qh[i * (WARP_SIZE / 2) + k/2] = get_int_from_uint8(bx->hmask, kqsx / 2); - x_sc[i * (WARP_SIZE / 4) + k/4] = get_int_from_uint8(bx->scales, kqsx / 4); +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; + + const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx; + + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI3_K; + const int kbxd = k % blocks_per_tile_x_row; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI3_K) { + const int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y; + + const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd; + + x_dm[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd].x = bxi->d; + } + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 2) { + const int i = i0 + i_offset * 2 + k / (WARP_SIZE/2); + + const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2); + + x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = get_int_from_uint8(bxi->hmask, k % (QI3_K/2)); + } + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 4) { + const int i = i0 + i_offset * 4 + k / (WARP_SIZE/4); + + const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4); + + x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8(bxi->scales, k % (QI3_K/4)); + } } static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); + const int kbx = k / QI3_K; const int kqsx = k % QI3_K; const int bq8_offset = QR3_K * (kqsx / (QI3_K/2)); const int scale_offset = kqsx - kqsx % QI8_1 + (kqsx % QI8_1) / (QI8_1/2); - const uint8_t * scales = ((uint8_t *) (x_sc + i * (WARP_SIZE/4))) + kbx*16; + const uint8_t * scales = ((uint8_t *) (x_sc + i * (WARP_SIZE/4) + i / 4)) + kbx*16; // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted - const int vh = ~x_qh[i * (WARP_SIZE/2) + kbx * (QI3_K/2) + kqsx % (QI3_K/2)] >> bq8_offset; + const int vh = ~x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + kqsx % (QI3_K/2)] >> bq8_offset; int u[QR3_K]; float d8[QR3_K]; @@ -1942,7 +2184,8 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat( d8[l] = y_ds[y_qs_index / QI8_1].x; } - return vec_dot_q3_K_q8_1_impl(x_ql[i * (WARP_SIZE + 1) + k], vh, u, scales, scale_offset, x_dm[i * (WARP_SIZE/QI3_K) + kbx].x, d8); + return vec_dot_q3_K_q8_1_impl(x_ql[i * (WARP_SIZE + 1) + k], vh, u, scales, scale_offset, + x_dm[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx].x, d8); } #define VDR_q4_K_q8_1 2 @@ -2068,9 +2311,9 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1( static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_K)]; - __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (3*WARP_SIZE/32)]; + __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; + __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_K) + GGML_CUDA_MMQ_Y/QI4_K]; + __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/8) + GGML_CUDA_MMQ_Y/8]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; @@ -2079,25 +2322,59 @@ static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q4_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { + + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); - const int kbx = k / QI4_K; - const int kqsx = k % QI4_K; + const int kbx = k / QI4_K; // == 0 if QK_K == 256 + const int kqsx = k % QI4_K; // == k if QK_K == 256 - const block_q4_K * bx = ((block_q4_K *) vx) + i*blocks_per_row + kbx; + const block_q4_K * bx0 = (block_q4_K *) vx; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bx->qs, kqsx); - x_dm[i * (WARP_SIZE / QI6_K) + kbx] = bx->dm; - x_sc[i * (3*WARP_SIZE/32) + k % (3*WARP_SIZE/32)] = get_int_from_uint8_aligned(bx->scales, k % (3*WARP_SIZE/32)); + const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx; + + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256 + const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI4_K) { + const int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y; + + const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd; + + x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm; + } + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 8) { + const int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % GGML_CUDA_MMQ_Y; + + const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8); + + x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_uint8_aligned(bxi->scales, k % (QI4_K/8)); + } } static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { - __builtin_assume(i < GGML_CUDA_MMQ_Y); - __builtin_assume(j < WARP_SIZE); - __builtin_assume(k < WARP_SIZE); + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI6_K; // == 0 if QK_K == 256 const int kqsx = k % QI6_K; // == k if QK_K == 256 @@ -2112,7 +2389,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat( v[0] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + kqsx % 4 + 0]; v[1] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + kqsx % 4 + 4]; - const uint16_t * scales = (const uint16_t *) &x_sc[i * (3*WARP_SIZE/32) + kbx * (3*WARP_SIZE/32)]; + const uint16_t * scales = (const uint16_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + kbx * 4]; uint16_t aux[2]; const int l = bq8_offset/2; if (l < 2) { @@ -2132,7 +2409,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat( d8[l] = y_ds[kqsy / QI8_1].x; } - return vec_dot_q4_K_q8_1_impl(v, u, sc, m, x_dm[i * (WARP_SIZE/QI4_K) + kbx], d8); + return vec_dot_q4_K_q8_1_impl(v, u, sc, m, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K + kbx], d8); } #define VDR_q5_K_q8_1 2 @@ -2260,10 +2537,10 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1( static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_K)]; - __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/4)]; - __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (3*WARP_SIZE/32)]; + __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; + __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_K) + GGML_CUDA_MMQ_Y/QI5_K]; + __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/4) + GGML_CUDA_MMQ_Y/4]; + __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/8) + GGML_CUDA_MMQ_Y/8]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; @@ -2273,26 +2550,68 @@ static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q5_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { + + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); + + const int kbx = k / QI5_K; // == 0 if QK_K == 256 + const int kqsx = k % QI5_K; // == k if QK_K == 256 + + const block_q5_K * bx0 = (block_q5_K *) vx; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; + + const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx; - const int kbx = k / QI5_K; - const int kqsx = k % QI5_K; + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256 + const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI5_K) { + const int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y; + + const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd; + + x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm; + } + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 4) { + const int i = i0 + i_offset * 4 + k / (WARP_SIZE/4); + + const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI5_K/4); - const block_q5_K * bx = ((block_q5_K *) vx) + i*blocks_per_row + kbx; + x_qh[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8(bxi->qh, k % (QI5_K/4)); + } + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 8) { + const int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % GGML_CUDA_MMQ_Y; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bx->qs, kqsx); - x_dm[i * (WARP_SIZE / QI6_K) + kbx] = bx->dm; - x_qh[i * (WARP_SIZE / 4) + k/4] = get_int_from_uint8_aligned(bx->qh, kqsx/4); - x_sc[i * (3*WARP_SIZE/32) + k % (3*WARP_SIZE/32)] = get_int_from_uint8_aligned(bx->scales, k % (3*WARP_SIZE/32)); + const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8); + + x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_uint8_aligned(bxi->scales, k % (QI5_K/8)); + } } static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { - __builtin_assume(i < 2*WARP_SIZE); - __builtin_assume(j < WARP_SIZE); - __builtin_assume(k < WARP_SIZE); + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI6_K; // == 0 if QK_K == 256 const int kqsx = k % QI6_K; // == k if QK_K == 256 @@ -2307,10 +2626,10 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat( vl[0] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + kqsx % 4 + 0]; vl[1] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + kqsx % 4 + 4]; - vh[0] = x_qh[i * (WARP_SIZE/4) + kqsx % 4 + 0] >> bq8_offset; - vh[1] = x_qh[i * (WARP_SIZE/4) + kqsx % 4 + 4] >> bq8_offset; + vh[0] = x_qh[i * (WARP_SIZE/4) + i/4 + kqsx % 4 + 0] >> bq8_offset; + vh[1] = x_qh[i * (WARP_SIZE/4) + i/4 + kqsx % 4 + 4] >> bq8_offset; - const uint16_t * scales = (const uint16_t *) &x_sc[i * (3*WARP_SIZE/32) + kbx * (3*WARP_SIZE/32)]; + const uint16_t * scales = (const uint16_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + kbx * 4]; uint16_t aux[2]; const int l = bq8_offset/2; if (l < 2) { @@ -2330,7 +2649,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat( d8[l] = y_ds[kqsy / QI8_1].x; } - return vec_dot_q5_K_q8_1_impl(vl, vh, u, sc, m, x_dm[i * (WARP_SIZE/QI4_K) + kbx], d8); + return vec_dot_q5_K_q8_1_impl(vl, vh, u, sc, m, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K + kbx], d8); } #define VDR_q6_K_q8_1 1 @@ -2387,10 +2706,10 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1( static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE + 1)]; - __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI6_K)]; - __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/2)]; - __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/8)]; + __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; + __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI6_K) + GGML_CUDA_MMQ_Y/QI6_K]; + __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/2) + GGML_CUDA_MMQ_Y/2]; + __shared__ int tile_x_sc[GGML_CUDA_MMQ_Y * (WARP_SIZE/8) + GGML_CUDA_MMQ_Y/8]; *x_ql = tile_x_ql; *x_dm = tile_x_dm; @@ -2400,26 +2719,68 @@ static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** static __device__ __forceinline__ void load_tiles_q6_K( const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, - int * __restrict__ x_sc, const int & i, const int & k, const int & blocks_per_row) { + int * __restrict__ x_sc, const int & i_offset, const int & k, const int & blocks_per_row) { - const int kbx = k / QI6_K; - const int kqsx = k % QI6_K; + __builtin_assume(i_offset >= 0); + __builtin_assume(i_offset < 8); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); - const block_q6_K * bx = ((block_q6_K *) vx) + i*blocks_per_row + kbx; + const int kbx = k / QI6_K; // == 0 if QK_K == 256 + const int kqsx = k % QI6_K; // == k if QK_K == 256 + + const block_q6_K * bx0 = (block_q6_K *) vx; + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { + const int i = i0 + i_offset; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bx->ql, kqsx); - x_dm[i * (WARP_SIZE / QI6_K) + kbx].x = bx->d; - x_qh[i * (WARP_SIZE / 2) + k/2] = get_int_from_uint8(bx->qh, kqsx/2); - x_sc[i * (WARP_SIZE / 8) + k/8] = get_int_from_int8(bx->scales, kqsx/8); + const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx; + + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->ql, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256 + const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI6_K) { + const int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % GGML_CUDA_MMQ_Y; + + const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd; + + x_dm[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd].x = bxi->d; + } + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 2) { + const int i = i0 + i_offset * 2 + k / (WARP_SIZE/2); + + const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI6_K/2); + + x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = get_int_from_uint8(bxi->qh, k % (QI6_K/2)); + } + +#pragma unroll + for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * 8) { + const int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % GGML_CUDA_MMQ_Y; + + const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4; + + x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8)); + } } static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { - __builtin_assume(i < GGML_CUDA_MMQ_Y); - __builtin_assume(j < WARP_SIZE); - __builtin_assume(k < WARP_SIZE); + __builtin_assume(i >= 0); + __builtin_assume(i < GGML_CUDA_MMQ_Y); + __builtin_assume(j >= 0); + __builtin_assume(j < WARP_SIZE); + __builtin_assume(k >= 0); + __builtin_assume(k < WARP_SIZE); const int kbx = k / QI6_K; // == 0 if QK_K == 256 const int kqsx = k % QI6_K; // == k if QK_K == 256 @@ -2428,9 +2789,9 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat( const int scale_offset = (QI6_K/4) * (kqsx / (QI6_K/2)) + (kqsx % (QI6_K/2)) / (QI6_K/8); const int vh_shift = 2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)); - const int vh = x_qh[i * (WARP_SIZE/2) + kbx * (QI6_K/2) + (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4)] >> vh_shift; + const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI6_K/2) + (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4)] >> vh_shift; - const int x_sc_offset = i * (WARP_SIZE/8) + kbx * (QI6_K/8); + const int x_sc_offset = i * (WARP_SIZE/8) + i/8 + kbx * (QI6_K/8); const int8_t * scales = ((int8_t *) (x_sc + x_sc_offset)) + scale_offset; int u[QR6_K]; @@ -2442,7 +2803,8 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat( d8[l] = y_ds[kqsy / QI8_1].x; } - return vec_dot_q6_K_q8_1_impl(x_ql[i * (WARP_SIZE + 1) + k], vh, u, scales, x_dm[i * (WARP_SIZE/QI6_K) + kbx].x, d8); + return vec_dot_q6_K_q8_1_impl(x_ql[i * (WARP_SIZE + 1) + k], vh, u, scales, + x_dm[i * (WARP_SIZE/QI6_K) + i/QI6_K + kbx].x, d8); } template qs, tid_x % QI8_1); }