forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 360
/
expose.cpp
230 lines (207 loc) · 8.66 KB
/
expose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//This is Concedo's shitty adapter for adding python bindings for llama
//Considerations:
//Don't want to use pybind11 due to dependencies on MSVCC
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
//Python will ALWAYS provide the memory, we just write to it.
#include <cassert>
#include <cstring>
#include <fstream>
#include <regex>
#include <iostream>
#include <iterator>
#include <queue>
#include <string>
#include <math.h>
#include "expose.h"
#include "model_adapter.cpp"
extern "C"
{
std::string platformenv, deviceenv;
//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
static FileFormat file_format = FileFormat::BADFORMAT;
bool load_model(const load_model_inputs inputs)
{
std::string model = inputs.model_filename;
lora_filename = inputs.lora_filename;
lora_base = inputs.lora_base;
int forceversion = inputs.forceversion;
if(forceversion==0)
{
file_format = check_file_format(model.c_str());
}
else
{
printf("\nWARNING: FILE FORMAT FORCED TO VER %d\nIf incorrect, loading may fail or crash.\n",forceversion);
file_format = (FileFormat)forceversion;
}
//first digit is whether configured, second is platform, third is devices
int parseinfo = inputs.clblast_info;
std::string usingclblast = "GGML_OPENCL_CONFIGURED="+std::to_string(parseinfo>0?1:0);
putenv((char*)usingclblast.c_str());
parseinfo = parseinfo%100; //keep last 2 digits
int platform = parseinfo/10;
int devices = parseinfo%10;
platformenv = "GGML_OPENCL_PLATFORM="+std::to_string(platform);
deviceenv = "GGML_OPENCL_DEVICE="+std::to_string(devices);
putenv((char*)platformenv.c_str());
putenv((char*)deviceenv.c_str());
executable_path = inputs.executable_path;
if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2 || file_format==FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4 || file_format==FileFormat::GPTJ_5)
{
printf("\n---\nIdentified as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::RETRY_LOAD)
{
if(file_format==FileFormat::GPTJ_1)
{
//if we tried 1 first, then try 3 and lastly 2
//otherwise if we tried 3 first, then try 2
file_format = FileFormat::GPTJ_4;
printf("\n---\nRetrying as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::GPTJ_3;
printf("\n---\nRetrying as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
//lastly try format 2
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::GPTJ_2;
printf("\n---\nRetrying as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
}
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else if(file_format==FileFormat::GPT2_1||file_format==FileFormat::GPT2_2||file_format==FileFormat::GPT2_3||file_format==FileFormat::GPT2_4)
{
printf("\n---\nIdentified as GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::GPT2_3;
printf("\n---\nRetrying as GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::GPT2_2;
printf("\n---\nRetrying as GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else if(file_format==FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
{
printf("\n---\nIdentified as RWKV model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2 || file_format==FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5 || file_format==FileFormat::NEOX_6 || file_format==FileFormat::NEOX_7)
{
printf("\n---\nIdentified as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::RETRY_LOAD)
{
if(file_format==FileFormat::NEOX_2)
{
file_format = FileFormat::NEOX_3;
printf("\n---\nRetrying as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
else
{
file_format = FileFormat::NEOX_5;
printf("\n---\nRetrying as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
}
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::NEOX_1;
printf("\n---\nRetrying as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else if(file_format==FileFormat::MPT_1)
{
printf("\n---\nIdentified as MPT model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else
{
printf("\n---\nIdentified as LLAMA model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
}
generation_outputs generate(const generation_inputs inputs, generation_outputs &output)
{
return gpttype_generate(inputs, output);
}
const char* new_token(int idx) {
if (generated_tokens.size() <= idx || idx < 0) return nullptr;
return generated_tokens[idx].c_str();
}
int get_stream_count() {
return generated_tokens.size();
}
bool has_finished() {
return generation_finished;
}
const char* get_pending_output() {
return gpttype_get_pending_output().c_str();
}
bool abort_generate() {
return gpttype_generate_abort();
}
}