-
Notifications
You must be signed in to change notification settings - Fork 298
/
Copy pathdatasets.yaml
80 lines (71 loc) · 2.51 KB
/
datasets.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) 2018-2020 Wenyi Tang
# VSR Dataset Description File
# Date: Oct 17th 2018
# Ver: v1.3
---
# Add root dir to dataset. Take effect on all patterns below.
Root: /mnt/data/datasets
# Collect your dataset directory and name them!
Path:
91-IMAGE: 91-image/
BSD100: BSD100_SR/image_SRF_4/*HR.*
BSD500-Train: BSR_bsds500/BSR/BSDS500/data/images/train/*.jpg
BSD500-Val: BSR_bsds500/BSR/BSDS500/data/images/val/*.jpg
BSD500-Test: BSR_bsds500/BSR/BSDS500/data/images/test/*.jpg
GOPRO-Train[video]: GOPRO_Large_all/train
GOPRO-Val[video]: GOPRO_Large_all/test
WATERLOO: exploration_database_and_code/pristine_images/
DIV2K-Train: DIV2K/DIV2K_train_HR/
DIV2K-Raw: DIV2K/DIV2K_train_LR/
DIV2K-Val: DIV2K/DIV2K_valid_HR/
SET5: Set5_SR/Set5/image_SRF_4/*HR.*
SET14: Set14_SR/Set14/image_SRF_4/*HR.*
URBAN100: Urban100_SR/image_SRF_4/*HR.*
SUNHAY80: SunHays80_SR/image_SRF_8/*HR.*
VID4[video]: vid4/original/
YOTRAIN-HR[video]: youku/train/hr/png
YOTRAIN-LR[video]: youku/train/lr/png
YOVAL-HR[video]: youku/val/hr/png
YOVAL-LR[video]: youku/val/lr/png
# bind datasets to a name, called in scripts
Dataset:
NONE: # empty set, do nothing
train: []
val: []
test: []
# The training data is collected from list of `train`.
# They are treated as the ground-truth HR images, and LR
# counterparts are automatically generated using bicubic interpolation.
BSD: # Combined BSD100 and BSD500 data
train: [BSD100, BSD500-Train] # collected in array
val: BSD500-Val # point as a single set
test: [BSD500-Test]
91-IMAGE: # Yang's 91 images
train: 91-IMAGE
val: [SET5]
test: [SET5, SET14]
WATERLOO: # https://ece.uwaterloo.ca/~k29ma/exploration/
train: WATERLOO
val: [SET5, SET14]
test: [URBAN100, SUNHAY80]
DIV2K: # NTIRE-2017 Challenge
train:
hr: DIV2K-Train
lr: DIV2K-Raw
val: [DIV2K-Val]
DW2K: # Combined DIV2K & Waterloo
train: [DIV2K-Train, WATERLOO, BSD500-Train]
val: [DIV2K-Val]
GOPRO[video]: # https://github.com/SeungjunNah/DeepDeblur_release
train: [GOPRO-Train]
val: [GOPRO-Val]
test: [VID4]
# If LR is pre-generated from HR or somewhere else, one can specify
# customized LR data like this.
YOUKU[video]:
train:
hr: YOTRAIN-HR
lr: YOTRAIN-LR
val:
hr: YOVAL-HR
lr: YOVAL-LR