forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_table.py
120 lines (97 loc) · 4.11 KB
/
infer_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import sys
import json
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "..")))
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
import paddle
from paddle.jit import to_static
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import get_image_file_list
from ppocr.utils.visual import draw_rectangle
from tools.infer.utility import draw_boxes
import tools.program as program
import cv2
@paddle.no_grad()
def main(config, device, logger, vdl_writer):
global_config = config["Global"]
# build post process
post_process_class = build_post_process(config["PostProcess"], global_config)
# build model
if hasattr(post_process_class, "character"):
config["Architecture"]["Head"]["out_channels"] = len(
getattr(post_process_class, "character")
)
model = build_model(config["Architecture"])
algorithm = config["Architecture"]["algorithm"]
load_model(config, model)
# create data ops
transforms = []
for op in config["Eval"]["dataset"]["transforms"]:
op_name = list(op)[0]
if "Encode" in op_name:
continue
if op_name == "KeepKeys":
op[op_name]["keep_keys"] = ["image", "shape"]
transforms.append(op)
global_config["infer_mode"] = True
ops = create_operators(transforms, global_config)
save_res_path = config["Global"]["save_res_path"]
os.makedirs(save_res_path, exist_ok=True)
model.eval()
with open(
os.path.join(save_res_path, "infer.txt"), mode="w", encoding="utf-8"
) as f_w:
for file in get_image_file_list(config["Global"]["infer_img"]):
logger.info("infer_img: {}".format(file))
with open(file, "rb") as f:
img = f.read()
data = {"image": img}
batch = transform(data, ops)
images = np.expand_dims(batch[0], axis=0)
shape_list = np.expand_dims(batch[1], axis=0)
images = paddle.to_tensor(images)
preds = model(images)
post_result = post_process_class(preds, [shape_list])
structure_str_list = post_result["structure_batch_list"][0]
bbox_list = post_result["bbox_batch_list"][0]
structure_str_list = structure_str_list[0]
structure_str_list = (
["<html>", "<body>", "<table>"]
+ structure_str_list
+ ["</table>", "</body>", "</html>"]
)
bbox_list_str = json.dumps(bbox_list.tolist())
logger.info("result: {}, {}".format(structure_str_list, bbox_list_str))
f_w.write("result: {}, {}\n".format(structure_str_list, bbox_list_str))
if len(bbox_list) > 0 and len(bbox_list[0]) == 4:
img = draw_rectangle(file, bbox_list)
else:
img = draw_boxes(cv2.imread(file), bbox_list)
cv2.imwrite(os.path.join(save_res_path, os.path.basename(file)), img)
logger.info("save result to {}".format(save_res_path))
logger.info("success!")
if __name__ == "__main__":
config, device, logger, vdl_writer = program.preprocess()
main(config, device, logger, vdl_writer)